嵌入式linux驱动学习-用cdev代替register_chrdev()

news/2024/10/30 17:20:07/

​上回说到字符设备驱动程序的注册与销毁register_chrdev()和unregister_chrdev()这是有缺陷的。

嵌入式lnux驱动学习-2.一个驱动程序的流程

现在用另外一个更好的方法代替,我们先来看看register_chrdev()实际上是调用了

__register_chrdev(major, 0, 256, name, fops);

static inline int register_chrdev(unsigned int major, const char *name,          const struct file_operations *fops){  return __register_chrdev(major, 0, 256, name, fops);}

这个256其实就是申请的次设备号个数。

还记得怎么创建设备节点吗,无论是手动创建还是自动创建都是用主设备号加上次设备号,一个驱动程序可以有很多不同的设备节点

一个驱动程序有自己对应的file_operations结构体,A驱动对应A_fop结构体,用register_chrdev()后,A驱动的256个设备节点都对应A_fop结构体。

用另外一种方法,可以指定次设备号个数,举例:

用register_chrdev()后,A驱动主设备号254,B驱动主设备号就不能用254,不然就冲突了。

而另外一种方法,A驱动主设备号254,次设备号申请0-2,3个,B驱动主设备号仍然可以用254,次设备号只要不用0-3就行,主设备号相同也不会产生冲突。

实际上另外一种方法就是把register_chrdev()展开:

1.分配主次设备号

#define LED_MAJOR 0#define DEVICE_NUM 1static int major = LED_MAJOR;static int __init myled_init(void){  int ret;  dev_t devno = MKDEV (major,0);  if (major)    ret = register_chrdev_region(devno, DEVICE_NUM, "myled");  else {    ret = alloc_chrdev_region(&devno, 0, DEVICE_NUM, "myled") ;    major = MAJOR(devno); }

dev_t devno定义了完整设备号, 为 32 位, 其中 12 位为主设备号, 20 位为次设备号。 

使用如下宏可以从 dev_t 获得主设备号和次设备号:

MAJOR (dev_t dev)
MINOR (dev_t dev)

使用如下宏从主、次设备号获得完整的设备号

MKDEV (major,minor)

register_chrdev_region()函数用于已知起始设备的设备号的情况, 而alloc_chrdev_region() 用于设备号未知, 向系统动态申请未被占用的设备号的情况,可以自动避开设备号重复的冲突。

DEVICE_NUM为我们要申请的次设备号个数,这里设置了1个。

2.初始化 cdev 结构体

在 Linux 内核中, 使用 cdev 结构体描述一个字符设备, cdev 结构体的定义如下:

struct cdev {  struct kobject kobj; /* 内嵌的 kobject */  struct module *owner; /* 所属模块 */  struct file_operations *ops; /* 文件操作结构体 */  struct list_head list;  dev_t dev; /* 设备号 */  unsigned int count;};

cdev 结构体里有一个重要成员 file_operations 定义了字符设备驱动提供给虚拟文件系统的接口函数。

绑定file_operations结构体在cdev结构体初始化中完成

为了精简就写个什么都没有的open函数。

static int led_open (struct inode *node, struct file *filp){    return 0;}static struct file_operations myled_oprs = {  .owner = THIS_MODULE,  .open  = led_open,};static int __init myled_init(void){  int ret;  dev_t devno = MKDEV (major,0);  if (major)    ret = register_chrdev_region(devno, DEVICE_NUM, "myled");  else {    ret = alloc_chrdev_region(&devno, 0, DEVICE_NUM, "myled") ;    major = MAJOR(devno);  }    cdev_init(&cdev_myled, &myled_oprs);//初始化  ...... }

3.添加驱动

很简单,就是在初始化后加一句

cdev_add (&cdev_myled, devno, DEVICE_NUM);

4.删除驱动和设备号

在驱动出口使用

  cdev_del(&cdev_myled);  unregister_chrdev_region(MKDEV (major, 0), DEVICE_NUM);

5.完整测试

自动创建设备节点的方式是一样的,我们只申请一个次设备号0,但是用次设备号0和1,创建两个设备节点myled0,myled1。

然后写一个简单的应用程序,功能只是打开设备节点,如果是一个myled0能打开,myled1打不开即正常。

驱动:

#include <linux/module.h>#include <linux/kernel.h>#include <linux/fs.h>#include <linux/init.h>#include <linux/delay.h>#include <linux/uaccess.h>#include <asm/irq.h>#include <asm/io.h>#include <linux/cdev.h>#include <linux/device.h>#define LED_MAJOR 0#define DEVICE_NUM 1static int major = LED_MAJOR;static struct class *led_class;static struct cdev cdev_myled;static int led_open (struct inode *node, struct file *filp){    return 0;}static struct file_operations myled_oprs = {  .owner = THIS_MODULE,  .open  = led_open,};static int __init myled_init(void){  int ret;  dev_t devno = MKDEV (major,0);  if (major)    ret = register_chrdev_region(devno, DEVICE_NUM, "myled");  else {    ret = alloc_chrdev_region(&devno, 0, DEVICE_NUM, "myled") ;    major = MAJOR(devno);  }    cdev_init(&cdev_myled, &myled_oprs);  cdev_add (&cdev_myled, devno, DEVICE_NUM);  led_class = class_create(THIS_MODULE, "myled");  device_create(led_class, NULL, MKDEV(major, 0),NULL,"myled0");     device_create(led_class, NULL, MKDEV(major, 1),NULL,"myled1");   return 0;}static void __exit myled_exit(void){  cdev_del(&cdev_myled);  unregister_chrdev_region(MKDEV (major, 0), DEVICE_NUM);  device_destroy(led_class, MKDEV(major, 0));  device_destroy(led_class, MKDEV(major, 1));    class_destroy(led_class);}module_init(myled_init);module_exit(myled_exit);MODULE_LICENSE("GPL");

应用:

#include <sys/types.h>#include <sys/stat.h>#include <fcntl.h>#include <stdio.h>int main(int argc,char **argv){  int fd;  if(argc != 2) {    printf("usage:%s num",argv[0]);    return 0;  }  fd = open(argv[1],O_RDWR);  if(fd < 0) {    printf("can't open!\n");  } else    printf("can open\n");  return 0;}

makefile:

KERN_DIR = /usr/src/linux-headers-4.8.0-36-genericall:  make -C $(KERN_DIR) M=`pwd` modules  gcc -o led_test led_test.cclean:  make -C $(KERN_DIR) M=`pwd` modules clean  rm -rf modules.order  rm -f led_nothingobj-m += led_nothing.o

文件传入linux系统,make命令编译,insmod命令加载驱动:

结果:

测试成功

6.测试2

两个驱动用同一个主设备号,看看系统能不能识别

如下代码,第一个主设备号由系统自动分配后,第二个主设备号就用和第一个一样的,两个驱动对应不同的open函数,分别生成两个设备,对应设备成功打开时,用printk输出信息。

如果打开不同节点时,输出信息不同,说明成功。

应用程序和上文完全相同

#include <linux/module.h>#include <linux/kernel.h>#include <linux/fs.h>#include <linux/init.h>#include <linux/delay.h>#include <linux/uaccess.h>#include <asm/irq.h>#include <asm/io.h>#include <linux/cdev.h>#include <linux/device.h>#define LED_MAJOR 0#define DEVICE_NUM 2static int major = LED_MAJOR;static struct class *led_class;static struct cdev cdev_myled;static struct cdev cdev_myled2;static int led_open (struct inode *node, struct file *filp){    printk("myled0/1 open\n");  return 0;}static struct file_operations myled_oprs = {  .owner = THIS_MODULE,  .open  = led_open,};static int led_open2 (struct inode *node, struct file *filp){    printk("myled2/3 open\n");  return 0;}static struct file_operations myled_oprs2 = {  .owner = THIS_MODULE,  .open  = led_open2,};static int __init myled_init(void){  int ret;  dev_t devno = MKDEV (major,0);  if (major)    ret = register_chrdev_region(devno, DEVICE_NUM, "myled");  else {    ret = alloc_chrdev_region(&devno, 0, DEVICE_NUM, "myled") ;    major = MAJOR(devno);  }  cdev_init(&cdev_myled, &myled_oprs);  cdev_add (&cdev_myled, devno, DEVICE_NUM);    register_chrdev_region(MKDEV (major,2), DEVICE_NUM, "myled2");    cdev_init(&cdev_myled2, &myled_oprs2);  cdev_add (&cdev_myled2, MKDEV (major,2), DEVICE_NUM);  led_class = class_create(THIS_MODULE, "myled");  device_create(led_class, NULL, MKDEV(major, 0),NULL,"myled0");   device_create(led_class, NULL, MKDEV(major, 1),NULL,"myled1");     device_create(led_class, NULL, MKDEV(major, 2),NULL,"myled2");   device_create(led_class, NULL, MKDEV(major, 3),NULL,"myled3");   return 0;}static void __exit myled_exit(void){  cdev_del(&cdev_myled);  unregister_chrdev_region(MKDEV (major, 0), DEVICE_NUM);  device_destroy(led_class, MKDEV(major, 0));  device_destroy(led_class, MKDEV(major, 1));    cdev_del(&cdev_myled2);  unregister_chrdev_region(MKDEV (major, 2), DEVICE_NUM);  device_destroy(led_class, MKDEV(major, 2));  device_destroy(led_class, MKDEV(major, 3));    class_destroy(led_class);}module_init(myled_init);module_exit(myled_exit);MODULE_LICENSE("GPL");

编译后insmod装载驱动,cat /proc/devices查看一下

两个主设备号相同的驱动程序出现了

四个设备节点也都打开成功,用dmseg命令查看内核打印信息

成功。可见cdev方法虽然多了几步,但是更加灵活。在今后的讲解中为了精简代码,还是用register_chrdev()。

更多内容与参考资料:大叔的嵌入式小站:
嵌入式linux驱动学习-3.用cdev代替register_chrrdev


http://www.ppmy.cn/news/26887.html

相关文章

Lua table

Table&#xff08;表&#xff09; table 是 lua 中唯一的数据结构&#xff0c;可以用于表示 数组&#xff0c;字典与结构体。它非常强大&#xff0c;可以储存任何数据类型。 table 的数据单元为一对键值。 table 是不固定大小的&#xff0c;你可以根据自己需要进行扩容。 构…

istio初步了解

istio 控制平面&#xff1a; Pilot&#xff1a;管理和配置部署在特定istio服务网格中的所有sidecar代理实例&#xff0c;管理sidecar代理之间的路由流量规则&#xff0c;并配置故障恢复功能&#xff0c;如超时、重试、熔断。 Citadel&#xff1a;istio中负责身份认证和证书管…

Netty核心原理(线程模型、核心API)与入门案例详解

Netty核心原理&#xff08;线程模型、核心API&#xff09;与入门案例详解 文章目录Netty核心原理&#xff08;线程模型、核心API&#xff09;与入门案例详解Netty 介绍原生 NIO 存在的问题概述线程模型线程模型基本介绍传统阻塞 I/O 服务模型Reactor 模型单 Reactor 单线程Nett…

Shiro框架详解

1.Shiro简介 1.1.基本功能点 Shiro 可以非常容易的开发出足够好的应用&#xff0c;其不仅可以用在 JavaSE 环境&#xff0c;也可以用在 JavaEE 环境。Shiro 可以帮助我们完成&#xff1a;认证、授权、加密、会话管理、与 Web 集成、缓存等。 Authentication&#xff1a;身份…

数据库必知必会:TiDB(11)TiDB集群安装

数据库必知必会&#xff1a;TiDB&#xff08;11&#xff09;TiDB集群安装TiDB集群安装单机环境上安装集群下载并安装TiUP工具安装TiUP cluster组件创建拓扑文件配置SSH免密登录检查安装要求创建安装目录部署集群启动集群验证集群启动使用命令验证通过Dashboard查看通过Grafana查…

2023只会“点点点”,被裁只是时间问题,高薪的自动化测试需要掌握那些技能?

互联网已然是存量市场了&#xff0c;对人员规模的需求正在放缓。在存量市场里&#xff0c;冗余人员和低效人员会被淘汰、被外包。而优秀的人才也会一直受到招聘方的青睐。所以我们就看到了近期行业里冰火两重天的一幕&#xff0c;一边是大量的低端测试工程师被淘汰、求职屡屡碰…

C++的完美讲解,还不快来看看?

目录 简介&#xff1a; 创建C程序&#xff1a; Windows编译简介&#xff1a; Hello,C World! 简介&#xff1a; C融合了3中不同的编程传统:C语言代表的过程性传统、C在C语言基础上添加的类代表的面向对象语言的传统以及C模板支持的通用编程传统。一般来说&#xff0c;计算机语言…

人工智能基础部分13-LSTM网络:预测上证指数走势

大家好&#xff0c;我是微学AI&#xff0c;今天给大家介绍一下LSTM网络&#xff0c;主要运用于解决序列问题。 一、LSTM网络简单介绍 LSTM又称为&#xff1a;长短期记忆网络&#xff0c;它是一种特殊的 RNN。LSTM网络主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题…