图像类型:通常我们的数字图像是彩色的3通道RGB图像,R代表红色,G代表绿色,B代表蓝色。
存储方式:通常是uint8 无符号整数,0~255,当然也有24bits 可以表示更多的颜色,虽然这样做可以提高图像对于现实世界的一个还原度,但是会增加更多的开销,因此我们通常还是用8bits
灰度图像:灰度图像在图像处理种有着非常重要的地位,一些常用的操作都会涉及到灰度图像的转换,边缘检测、二值化等这些操作之前通常都是RGB to Gray。
直接给出公式:Gray = 0.2989*R+0.5870*G+0.1140*B
#Python Opencv
#导入头文件
%matplotlib inline
import matplotlib.pyplot as plt
import cv2
import numpy as np#读取图像,opencv读取图像通道顺序为BGR
img=cv2.imread('img.path.jpg')#显示图像,其中.astype(np.uint8)为了确保数据格式以免无法显示,plt显示图像需要为RGB顺序
plt.figure(figsize=(15,10))
plt.imshow(cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_BGR2RGB))
plt.show()
img=0.2989*img[:,:,2]+0.5870*img[:,:,1]+0.1140*img[:,:,0]
######
plt.figure(figsize=(15,10))
plt.imshow(img, cmap ='gray')
plt.show()
#opencv 自带函数进行转化
plt.figure(figsize=(15,10))
plt.imshow(cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_BGR2GRAY),cmap='gray')
plt.show()
img3=0.2989*img[:,:,2]+0.5870*img[:,:,1]+0.1140*img[:,:,0]
img2=cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_BGR2GRAY)print((img3-img2).sum()/(img.shape[0]*img.shape[1])) ###结果=-0.0072855376781315
对比下,自己用公式得到的灰度图 和 opencv自己函数的灰度图,其实还是不一样的,应该是计算精度上的差距