常见的垃圾回收器

news/2024/11/30 2:46:17/

一、参考文章

https://www.cnblogs.com/datiangou/p/10245874.html

https://www.cnblogs.com/jason1990/archive/2019/10/24/11732261.html

二、常用垃圾回收器

 

1. JDK诞生 Serial追随 提高效率,诞生了PS,为了配合CMS,诞生了PN,CMS是1.4版本后期引入,CMS是里程碑式的GC,它开启了并发回收的过程,但是CMS毛病较多,因此目前任何一个JDK版本默认是CMS
   并发垃圾回收是因为无法忍受STW
2. Serial 年轻代 串行回收

Serial收集器(Serial + Serial Old)的主要特点是单线程回收资源。当需要执行垃圾回收时,程序会暂停一切工作(又称为Stop The World,STW),使用复制算法完成垃圾清理工作。

优点:

  • 简单高效,是Client模式下默认的垃圾收集器;
  • 对于资源受限的环境,比如单核(例如Docker中设置单核),单线程效率较高;
  • 内存小于一两百兆的桌面程序中,交互有限,则有限的STW是可以接受的。

缺点:

  • 垃圾回收速度较慢且回收能力有限,频繁的STW会导致较差的使用体验。

3. PS(Parallel Scavenge收集器) 年轻代 并行回收

新生代的收集器,同样用的是复制算法,也是并行多线程收集。与ParNew最大的不同,它关注的是垃圾回收的吞吐量。

这里的吞吐量指的是 总时间与垃圾回收时间的比例。这个比例越高,证明垃圾回收占整个程序运行的比例越小。

Parallel Scavenge收集器提供两个参数控制垃圾回收的执行:

  • -XX:MaxGCPauseMillis,最大垃圾回收停顿时间。这个参数的原理是空间换时间,收集器会控制新生代的区域大小,从而尽可能保证回收少于这个最大停顿时间。简单的说就是回收的区域越小,那么耗费的时间也越小。
    所以这个参数并不是设置得越小越好。设太小的话,新生代空间会太小,从而更频繁的触发GC。
  • -XX:GCTimeRatio,垃圾回收时间与总时间占比。这个是吞吐量的倒数,原理和MaxGCPauseMillis相同。

因为Parallel Scavenge收集器关注的是吞吐量,所以当设置好以上参数的时候,同时不想设置各个区域大小(新生代,老年代等)。可以开启**-XX:UseAdaptiveSizePolicy**参数,让JVM监控收集的性能,动态调整这些区域大小参数。

4. ParNew 年轻代 配合CMS的并行回收

ParNew同样用于新生代,是Serial的多线程版本,并且在参数、算法(同样是复制算法)上也完全和Serial相同。

Par是Parallel的缩写,但它的并行仅仅指的是收集多线程并行,并不是收集和原程序可以并行进行。ParNew也是需要暂停程序一切的工作,然后多线程执行垃圾回收。

因为是多线程执行,所以在多CPU下,ParNew效果通常会比Serial好。但如果是单CPU则会因为线程的切换,性能反而更差。

5. SerialOld 

老年代的收集器,与Serial一样是单线程,不同的是算法用的是标记-整理(Mark-Compact)。

 

因为老年代里面对象的存活率高,如果依旧是用复制算法,需要复制的内容较多,性能较差。并且在极端情况下,当存活为100%时,没有办法用复制算法。所以需要用Mark-Compact,以有效地避免这些问题。

6. ParallelOld
7. ConcurrentMarkSweep 老年代 并发的, 垃圾回收和应用程序同时运行,降低STW的时间(200ms)
   CMS问题比较多,所以现在没有一个版本默认是CMS,只能手工指定
   CMS既然是MarkSweep,就一定会有碎片化的问题,碎片到达一定程度,CMS的老年代分配对象分配不下的时候,使用SerialOld 进行老年代回收
   想象一下:
   PS + PO -> 加内存 换垃圾回收器 -> PN + CMS + SerialOld(几个小时 - 几天的STW)
   几十个G的内存,单线程回收 -> G1 + FGC 几十个G -> 上T内存的服务器 ZGC
   算法:三色标记 + Incremental Update

 

CMS,Concurrent Mark Sweep,同样是老年代的收集器。它关注的是垃圾回收最短的停顿时间(低停顿),在老年代并不频繁GC的场景下,是比较适用的。

命名中用的是concurrent,而不是parallel,说明这个收集器是有与工作执行并发的能力的。MS则说明算法用的是Mark Sweep算法。

来看看具体地工作原理。CMS整个过程比之前的收集器要复杂,整个过程分为四步:

  • 初始标记(initial mark),单线程执行,需要“Stop The World”,但仅仅把GC Roots的直接关联可达的对象给标记一下,由于直接关联对象比较小,所以这里的速度非常快。
  • 并发标记(concurrent mark),对于初始标记过程所标记的初始标记对象,进行并发追踪标记,此时其他线程仍可以继续工作。此处时间较长,但不停顿。
  • 重新标记(remark),在并发标记的过程中,由于可能还会产生新的垃圾,所以此时需要重新标记新产生的垃圾。此处执行并行标记,与用户线程不并发,所以依然是“Stop The World”,时间比初始时间要长一点。
  • 并发清除(concurrent sweep),并发清除之前所标记的垃圾。其他用户线程仍可以工作,不需要停顿。

由于最耗费时间的并发标记与并发清除阶段都不需要暂停工作,所以整体的回收是低停顿的。

由于CMS以上特性,缺点也是比较明显的,

  • Mark Sweep算法会导致内存碎片比较多
  • CMS的并发能力依赖于CPU资源,所以在CPU数少和CPU资源紧张的情况下,性能较差
  • 并发清除阶段,用户线程依然在运行,所以依然会产生新的垃圾,此阶段的垃圾并不会再本次GC中回收,而放到下次。所以GC不能等待内存耗尽的时候才进行GC,这样的话会导致并发清除的时候,用户线程可以了利用的空间不足。所以这里会浪费一些内存空间给用户线程预留。

有人会觉得既然Mark Sweep会造成内存碎片,那么为什么不把算法换成Mark Compact呢?

答案其实很简答,因为当并发清除的时候,用Compact整理内存的话,原来的用户线程使用的内存还怎么用呢?要保证用户线程能继续执行,前提的它运行的资源不受影响嘛。Mark Compact更适合“Stop the World”这种场景下使用。

8. G1(10ms)
   算法:三色标记 + SATB

G1将内存划分为多个大小相同的Region(1-32M,上限2048个),每个Region均拥有自己的分代属性,这些分代不需要连续。通过划分Region,G1可以根据计算老年代对象的效益率,优先回收具有最高效益率的对象(分代的内存不连续,GC搜索垃圾时需要全盘扫描找出对象引用情况,G1通过在每个Region中维护一个Remembered Set记录对象引用情况解决此问题)。具体如下图所示:

G1提供了两种GC模式,Young GC以及Mixed GC,两种GC都会STW。

两种GC模式

  • Young GC,关注于所有年轻代的Region,通过控制收集年轻代的Region个数,从而控制GC的回收时间。
  • Mixed GC,关注于所有年轻代的Region,并且加上通过预测计算最大收益的若干个老年代Region。

整体的执行流程:

  • 初始标记(initial mark),标记了从GC Root开始直接关联可达的对象。STW(Stop the World)执行。
  • 并发标记(concurrent marking),并发标记初始标记的对象,此时用户线程依然可以执行。
  • 最终标记(Remark),STW,标记再并发标记过程中产生的垃圾。
  • 筛选回收(Live Data Counting And Evacuation),评估标记垃圾,根据GC模式回收垃圾。STW执行。

9. ZGC (1ms) PK C++
   算法:ColoredPointers + LoadBarrier

在JDK 11当中,加入了实验性质的ZGC。它的回收耗时平均不到2毫秒。它是一款低停顿高并发的收集器。

ZGC几乎在所有地方并发执行的,除了初始标记的是STW的。所以停顿时间几乎就耗费在初始标记上,这部分的实际是非常少的。那么其他阶段是怎么做到可以并发执行的呢?

ZGC主要新增了两项技术,一个是着色指针Colored Pointer,另一个是读屏障Load Barrier

着色指针Colored Pointer
ZGC利用指针的64位中的几位表示Finalizable、Remapped、Marked1、Marked0(ZGC仅支持64位平台),以标记该指向内存的存储状态。相当于在对象的指针上标注了对象的信息。注意,这里的指针相当于Java术语当中的引用。

在这个被指向的内存发生变化的时候(内存在Compact被移动时),颜色就会发生变化。

在G1的时候就说到过,Compact阶段是需要STW,否则会影响用户线程执行。那么怎么解决这个问题呢?

读屏障Load Barrier 由于着色指针的存在,在程序运行时访问对象的时候,可以轻易知道对象在内存的存储状态(通过指针访问对象),若请求读的内存在被着色了。那么则会触发读屏障。读屏障会更新指针再返回结果,此过程有一定的耗费,从而达到与用户线程并发的效果。

把这两项技术联合下理解,引用R大(RednaxelaFX)的话

与标记对象的传统算法相比,ZGC在指针上做标记,在访问指针时加入Load Barrier(读屏障),比如当对象正被GC移动,指针上的颜色就会不对,这个屏障就会先把指针更新为有效地址再返回,也就是,永远只有单个对象读取时有概率被减速,而不存在为了保持应用与GC一致而粗暴整体的Stop The World。

ZGC虽然目前还在JDK 11还在实验阶段,但由于算法与思想是一个非常大的提升,相信在未来不久会成为主流的GC收集器使用。


10. Shenandoah
    算法:ColoredPointers + WriteBarrier
11. Eplison
12. PS 和 PN区别的延伸阅读:
    ▪[https://docs.oracle.com/en/java/javase/13/gctuning/ergonomics.html#GUID-3D0BB91E-9BFF-4EBB-B523-14493A860E73](https://docs.oracle.com/en/java/javase/13/gctuning/ergonomics.html)
13. 垃圾收集器跟内存大小的关系
    1. Serial 几十兆
    2. PS 上百兆 - 几个G
    3. CMS - 20G
    4. G1 - 上百G
    5. ZGC - 4T - 16T(JDK13)

1.8默认的垃圾回收:PS + ParallelOld

 

小编也有自己微信公众号:“JAVA菜鸟程序猿”,喜欢的可以关注下哦!


http://www.ppmy.cn/news/257307.html

相关文章

17. 垃圾回收器

垃圾回收器 GC分类与性能指标 垃圾收集器没有在规范中进行过多的规定,可以由不同的厂商、不同版本的JVM来实现。 由于JDK的版本处于高速迭代过程中,因此Java发展至今已经衍生了众多的GC版本。 从不同角度分析垃圾收集器,可以将GC分为不同…

三十五、垃圾回收器

一、GC分类于性能指标 垃圾回收器的分类 1.串行回收指的是在同一时间段内只允许有一个CPU用于执行垃圾回收操作,此时工作线程被暂停,直至垃圾收集工作结束。 1)在诸如单CPU处理器或者较小的应用内存等硬件平台不是特别优越的场合,串行回收器…

垃圾回收器算法

GC 垃圾回收概述 Java 和 C语言最大的区别,就在于,垃圾回收和内存动态分配上。C语言没有垃圾回收技术,需要程序员手动回收。1960年,第一门开始使用内存动态分配和垃圾收集技术的Lisp语言诞生。关于垃圾收集有三个经典问题&#x…

GC垃圾回收器

分代收集器 新生代回收器 Serial:复制算法 | 单线程 | 适合内存不大的场景 ParNew:复制算法 | 多线程 | Serial收集器多线程版本 Parallel Scavenge:复制算法 | 多线程 | 类ParNew,更关注吞吐量 老年代回收器 Serial Old&#xf…

7种垃圾回收器介绍

可以作为GC Root对象: 1、栈中引用的对象 2、方法区中类静态属性引用的对象 3、方法区中常量引用的对象 4、本地方法栈中引用的对象(一般是Native方法) 先看图: 新生代收集器 Serial收集器 Serial收集器是采用复制算法的新生代…

17.垃圾回收器

一、安装源选择 https://github.com/qiuxiafei/zk-web:Github上较多人使用的仓库,可以直接运行源码、Docker编译安装包两种方式运行。https://hub.docker.com/r/tobilg/zookeeper-webui/:启动运行Docker即可提供服务,Web页面效果…

常用的垃圾回收器

1、常见的垃圾回收器介绍: 如果说收集算法是内存回收的⽅法论,那么垃圾收集器就是内存回收的具体实现。现在为⽌还没有最好的垃圾收集器出现,更加没有万能的垃圾收集器,我们能做的就是根据具体应⽤场景选择适合⾃⼰的垃圾收集器。…

2022-2028全球与中国厨余垃圾处理器市场现状及未来发展趋势

【报告篇幅】:97 【报告图表数】:139 【报告出版时间】:2021年12月 报告摘要 2021年全球厨余垃圾处理器市场销售额达到了16亿美元,预计2028年将达到20亿美元,年复合增长率(CAGR)为3.8%&#x…