哈希表题目:矩阵置零

news/2025/2/22 15:43:11/

文章目录

  • 题目
    • 标题和出处
    • 难度
    • 题目描述
      • 要求
      • 示例
      • 数据范围
      • 进阶
  • 解法一
    • 思路和算法
    • 代码
    • 复杂度分析
  • 解法二
    • 思路和算法
    • 代码
    • 复杂度分析
  • 解法三
    • 思路和算法
    • 代码
    • 复杂度分析

题目

标题和出处

标题:矩阵置零

出处:73. 矩阵置零

难度

3 级

题目描述

要求

给定一个 m×n\texttt{m} \times \texttt{n}m×n 的矩阵,如果一个元素为 0\texttt{0}0,则将其所在行和列的所有元素都设为 0\texttt{0}0

请使用原地算法。

示例

示例 1:

示例 1

输入:matrix=[[1,1,1],[1,0,1],[1,1,1]]\texttt{matrix = [[1,1,1],[1,0,1],[1,1,1]]}matrix = [[1,1,1],[1,0,1],[1,1,1]]
输出:[[1,0,1],[0,0,0],[1,0,1]]\texttt{[[1,0,1],[0,0,0],[1,0,1]]}[[1,0,1],[0,0,0],[1,0,1]]

示例 2:

示例 2

输入:matrix=[[0,1,2,0],[3,4,5,2],[1,3,1,5]]\texttt{matrix = [[0,1,2,0],[3,4,5,2],[1,3,1,5]]}matrix = [[0,1,2,0],[3,4,5,2],[1,3,1,5]]
输出:[[0,0,0,0],[0,4,5,0],[0,3,1,0]]\texttt{[[0,0,0,0],[0,4,5,0],[0,3,1,0]]}[[0,0,0,0],[0,4,5,0],[0,3,1,0]]

数据范围

  • m=matrix.length\texttt{m} = \texttt{matrix.length}m=matrix.length
  • n=matrix[0].length\texttt{n} = \texttt{matrix[0].length}n=matrix[0].length
  • 1≤m,n≤200\texttt{1} \le \texttt{m, n} \le \texttt{200}1m, n200
  • -231≤matrix[i][j]≤231−1\texttt{-2}^\texttt{31} \le \texttt{matrix[i][j]} \le \texttt{2}^\texttt{31} - \texttt{1}-231matrix[i][j]2311

进阶

  • 一个直观的解决方案是使用 O(mn)\texttt{O(mn)}O(mn) 的额外空间,但这并不是一个好的解决方案。
  • 一个简单的改进方案是使用 O(m+n)\texttt{O(m + n)}O(m + n) 的额外空间,但这仍然不是最好的解决方案。
  • 你能想出一个仅使用常量空间的解决方案吗?

解法一

思路和算法

最直观的做法是找到矩阵中所有等于 000 的元素,对于每个元素 000,将其所在行和列的所有元素置零。

如果直接在原矩阵中将元素置零,则无法判断等于 000 的元素是原始值等于 000 还是被置零,因此需要创建辅助矩阵,辅助矩阵和原矩阵的大小相同,辅助矩阵中的每个元素表示原矩阵中的该元素是否置零。

遍历原矩阵,对于原矩阵中每个等于 000 的元素,将辅助矩阵中相应位置的相同行和相同列的元素都设为置零。然后再次遍历原矩阵和辅助矩阵,对于辅助矩阵中置零的位置,将原矩阵中相应位置的元素置零。

代码

class Solution {public void setZeroes(int[][] matrix) {int m = matrix.length, n = matrix[0].length;boolean[][] zero = new boolean[m][n];for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {if (matrix[i][j] == 0) {for (int k = 0; k < n; k++) {zero[i][k] = true;}for (int k = 0; k < m; k++) {zero[k][j] = true;}}}}for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {if (zero[i][j]) {matrix[i][j] = 0;}}}}
}

复杂度分析

  • 时间复杂度:O(mn(m+n))O(mn(m + n))O(mn(m+n)),其中 mmmnnn 分别是矩阵 matrix\textit{matrix}matrix 的行数和列数。需要遍历矩阵两次,第一次遍历需要将元素 000 所在行和列的所有元素标为置零,每个元素需要 O(m+n)O(m + n)O(m+n) 的处理时间,第二次遍历将矩阵中的标为置零的元素置零,每个元素需要 O(1)O(1)O(1) 的处理时间,因此总时间复杂度是 O(mn(m+n))O(mn(m + n))O(mn(m+n))

  • 空间复杂度:O(mn)O(mn)O(mn),其中 mmmnnn 分别是矩阵 matrix\textit{matrix}matrix 的行数和列数。需要创建和原矩阵大小相同的辅助矩阵记录原矩阵中的每个元素是否置零。

解法二

思路和算法

解法一的时间复杂度和空间复杂度都较高,可以优化。

由于矩阵中每个元素 000 所在行和列的所有元素需要置零,因此只需要记录矩阵的每一行和每一列是否需要置零即可。

创建两个哈希表分别记录矩阵的每一行和每一列是否需要置零,遍历矩阵一次,对于每个等于 000 的元素,在两个哈希表中分别记录其所在行和列需要置零,遍历结束之后即可得到所有需要置零的行和列。然后再次遍历矩阵,对于每个元素,如果两个哈希表中至少有一个哈希表记录了该元素所在的行或列需要置零,则将该元素置零。

实现方面,可以用两个数组分别记录矩阵的每一行和每一列是否需要置零。

代码

class Solution {public void setZeroes(int[][] matrix) {int m = matrix.length, n = matrix[0].length;boolean[] rows = new boolean[m];boolean[] columns = new boolean[n];for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {if (matrix[i][j] == 0) {rows[i] = true;columns[j] = true;}}}for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {if (rows[i] || columns[j]) {matrix[i][j] = 0;}}}}
}

复杂度分析

  • 时间复杂度:O(mn)O(mn)O(mn),其中 mmmnnn 分别是矩阵 matrix\textit{matrix}matrix 的行数和列数。需要遍历矩阵两次,第一次遍历需要将元素 000 所在行和列在两个哈希表中记录,每个元素需要 O(1)O(1)O(1) 的处理时间,第二次遍历将矩阵中的标为置零的元素置零,每个元素需要 O(1)O(1)O(1) 的处理时间,因此总时间复杂度是 O(mn)O(mn)O(mn)

  • 空间复杂度:O(m+n)O(m + n)O(m+n),其中 mmmnnn 分别是矩阵 matrix\textit{matrix}matrix 的行数和列数。需要创建两个哈希表(或数组)分别记录矩阵的每一行和每一列是否需要置零,各需要 O(m)O(m)O(m)O(n)O(n)O(n) 的空间。

解法三

思路和算法

解法二仍需要 O(m+n)O(m + n)O(m+n) 的额外空间。如果要将空间复杂度降低到 O(1)O(1)O(1),必须在矩阵内部记录每一行和每一列是否需要置零。

在矩阵内部记录置零信息,可以使用第 000 行和第 000 列记录。第 000 行的一个元素如果是 000,则表示该元素所在列需要置零;第 000 列的一个元素如果是 000,则表示该元素所在行需要置零。

如果直接修改矩阵的第 000 行和第 000 列的元素,则无法记录矩阵的第 000 行和第 000 列是否需要置零,因此需要使用两个变量分别记录矩阵的第 000 行和第 000 列是否需要置零。

矩阵置零的完整过程如下。

  1. 遍历矩阵的第 000 行和第 000 列,记录矩阵的第 000 行和第 000 列是否需要置零。

  2. 遍历矩阵的其余元素(指除了第 000 行和第 000 列的全部元素,下同),对于每个等于 000 的元素,将其所在行的第 000 列的元素和所在列的第 000 行的元素置零。

  3. 再次遍历矩阵的其余元素,对于每个元素,如果一个元素所在的行或列需要置零,则将该元素置零。

  4. 如果矩阵的第 000 行需要置零,则将矩阵的第 000 行元素全部置零;如果矩阵的第 000 列需要置零,则将矩阵的第 000 列元素全部置零。

如果矩阵的第 000 行或第 000 列的一个元素原本就是 000,则该元素所在行和列需要置零,上述解法同样适用于该情况。

代码

class Solution {public void setZeroes(int[][] matrix) {int m = matrix.length, n = matrix[0].length;boolean rowZero = false, columnZero = false;for (int j = 0; j < n; j++) {if (matrix[0][j] == 0) {rowZero = true;break;}}for (int i = 0; i < m; i++) {if (matrix[i][0] == 0) {columnZero = true;break;}}for (int i = 1; i < m; i++) {for (int j = 1; j < n; j++) {if (matrix[i][j] == 0) {matrix[i][0] = 0;matrix[0][j] = 0;}}}for (int i = 1; i < m; i++) {for (int j = 1; j < n; j++) {if (matrix[i][0] == 0 || matrix[0][j] == 0) {matrix[i][j] = 0;}}}if (rowZero) {for (int j = 0; j < n; j++) {matrix[0][j] = 0;}}if (columnZero) {for (int i = 0; i < m; i++) {matrix[i][0] = 0;}}}
}

复杂度分析

  • 时间复杂度:O(mn)O(mn)O(mn),其中 mmmnnn 分别是矩阵 matrix\textit{matrix}matrix 的行数和列数。最多需要遍历矩阵中的每个元素两次。

  • 空间复杂度:O(1)O(1)O(1)


http://www.ppmy.cn/news/25512.html

相关文章

防火墙有关iptables的知识点

基本概念 什么是防火墙 在计算中&#xff0c;防火墙是基于预定安全规则来监视和控制传入和传出网络流量的网络安全系统。该计算机流入流出的所有网络通信均要经过此防火墙。防火墙对流经它的网络通信进行扫描&#xff0c;这样能够过滤掉一些攻击&#xff0c;以免其在目标计算机…

FPGA时序约束与分析 --- 时序约束概述

本系列参考文献 — FPGA时序与约束分析-吴厚航 FPGA从综合到实现需要的过程如下&#xff1a;synth_design -> opt_design -> place-design -> phys_opt_design -> route_design 1、时序约束的理解 2、时序约束的基本路径 3、时序约束的步骤 4、时序约束的主要方法…

postman使用简介

1、介绍 postman是一款功能强大的网页调试和模拟发送HTTP请求的Chrome插件&#xff0c;支持几乎所有类型的HTTP请求 2、下载及安装 官方文档&#xff1a;https://www.getpostman.com/docs/v6/ chrome插件&#xff1a;chrome浏览器应用商店直接搜索添加即可&#xff08;需墙&…

CSDN 编辑器 Marddown 语法备忘

原文链接&#xff1a;https://blog.csdn.net/blogdevteam/article/details/103478461 本文对其二次加工&#xff0c;增加渲染样式、补充例程、添加未收录的常用语法。 CSDN Markdown 编辑器遵循 CommonMark spec 语法规范。 快捷键 撤销&#xff1a;Ctrl/Command Z 重做&…

IP协议详解

目录 前言&#xff1a; IP协议 提出问题 解决方案 地址管理 子网掩码 路由选择 小结&#xff1a; 前言&#xff1a; IP协议作为网络层知名协议。当数据经过传输层使用TCP或者UDP对数据进行封装&#xff0c;然后当数据到达网络层&#xff0c;基于TCP或UDP数据包继续进行…

SHA1详解

目录 一、介绍 二、与MD5的区别 1、对强行攻击的安全性 2、对密码分析的安全性 3、速度 三、应用 1、文件指纹 2、Git中标识对象 四、算法原理 1、填充消息 2、消息处理 3、数据运算 &#xff08;1&#xff09;链接变量 &#xff08;2&#xff09;步函数 一、介绍…

区块链知识系列 - 系统学习EVM(四)-zkEVM

区块链知识系列 - 系统学习EVM(一) 区块链知识系列 - 系统学习EVM(二) 区块链知识系列 - 系统学习EVM(三) 今天我们来聊聊 zkEVM、EVM 兼容性 和 Rollup 是什么&#xff1f; 1. 什么是 Rollup rollup顾名思义&#xff0c;就是把一堆交易卷&#xff08;rollup&#xff09;起来…

博客等级说明

CSDN 博客等级是按照用户的博客积分数量进行的设定&#xff0c;为 Lv1 至 Lv10 共 10 个等级&#xff0c;不同的等级创作者可以享受到不同的权益待遇。例如&#xff0c;皮肤奖励、自定义域名、客服优先处理、自定义文章标签等特权。您需要提高博客积分进一步提升等级&#xff0…