ARM64移动处理器解惑 iphone5s

news/2024/10/30 20:11:09/

“64位”

我们先来谈谈“64位”这个术语及其含义。大家对于这个术语一直比较困惑,很大一部分原因在于,它没有统一的、约定俗成的定义。然而,在大体上却达成了一些共识,尽管这些共识并未为大众所知。

“×× 位”CPU通常是指两个部分的宽度:整数寄存器的宽度和指针的宽度。值得庆幸的是,在大多数现代CPU中,它们是一致的。“64位”通常是指CPU有64 位整数寄存器和64位指针。除了搞清楚“64位”所指的对象外,明白非“64位”所指的对象也十分重要,这些对象通常包括以下几种。

  • 内存(RAM)地址大小。这一数值(关系到硬件可支持的最大内存)与CPU的位数无关。ARM架构的内存地址通常从26位到40位不等。
  • 数据总线大小。CPU从内存或缓存中获取的数据量也与CPU的位数无关,某些CPU指令可能需要特定大小的数据,但在实际应用中,既可一次获取多条指令, 也可多次获取一条指令。上一代iPhone就已经以64位块为单位从内存获取数据了。在PC中,块大小最高可达192位。
  • 与浮点运算相关的参数。FPU寄存器的大小和内部设计是独立的,ARM架构采用64位FPU已颇有段时间了。

“64位”的优点与缺点

尽管64位与硬件可支持的最大内存无关,但便于单一程序使用更大内存。在32位CPU中,单一程序仅有4GB地址空间,减去被操作系统和标准库所占用的部 分,只剩1~3GB可用。如果一个32位系统的RAM超过4GB,单一程序很难充分利用全部空间,除非开发者耍些小聪明,例如直接命令操作系统按需求分配 内存,或将程序拆分成多个进程。但在实际应用中,很少有程序这么做,因为编程更麻烦,还会有损性能。系统拥有更多内存的好处是,能同时运行多个应用并减少 硬盘缓存。这样固然不错,但难免有个别程序需要使用更多内存的情况。

即使对于物理内存较小的系统,更大的地址空间也有帮助。内存映射文件是种有用的结构,在32位系统中,程序不能映射大文件(通常是指超过几百MB的文件),而64位系统的可用地址空间更大,不必有这方面的担心。

不过,增加指针宽度有个严重的缺点:在所有其他条件都相同的情况下,单一程序在64位CPU系统中更占内存。因为指针本身也需要存储于内存中,在64位系统 上,这个空间增加了一倍。而大多数程序运用指针很频繁,所以额外占用的空间往往不少。这给缓存带来了压力,从而导致性能降低。

简而言之,“64位”可以提升某些应用的性能,并使内存映射文件这种编程技术更易用。不过,它也会因占用更多内存而降低性能。

ARM64

iPhone 5S的64位CPU是配有更宽寄存器的ARM处理器,与32位ARM架构相比,64位ARM架构包括以下重大变动:首先是名称的变化——它的官方名称为 “AArch64”,但这个名字读起来很绕口,敲起来也别扭。苹果称它为ARM64,我也更倾向于用这个名字。

较32位ARM架构而 言,ARM64的整数寄存器数量增加了一倍,32位ARM架构有16个整数寄存器,其中1个是专用的程序计数器,还有2个用于堆栈指针和链接,其他13个 则作一般用途。而ARM64位架构有32个整数寄存器,包括1个专用的零寄存器,1个链接寄存器和1个帧指针寄存器,还有1个寄存器预留给平台,另外28 个则为通用整数寄存器。ARM64上可用浮点寄存器的数量有所增加。32位ARM处理器有32个32位浮点寄存器,还有16个额外的64位寄存器。这些寄 存器的结构有些特殊,可被视为等价于16个重叠的128位寄存器。ARM64则将其简化为32个128位寄存器,且没有重叠。

寄存器的数量 会对性能会产生巨大影响。与CPU相比,内存要慢得多。与CPU处理一条指令的时间相比,读取和写入内存都需要更长时间。CPU试图通过引入缓存来缓解这 一差距。但与CPU内部的寄存器相比,即使速度最快的缓存也慢得多。更多的寄存器意味着更多数据能存储在CPU内部,这降低了内存访问频率,同时提高了性 能。

除了增加寄存器数量,ARM64也为指令集带来了重大变化。大多数32位ARM处理器可基于运行时条件寄存器的状态执行条件指令,这使 得在编译if等语句时无需分支。不过这种方式引入的麻烦多于便利,因此ARM64取消了条件执行。ARM64的NEON SIMD单元完全符合IEEE754双精度标准,而32位版本的NEON SIMD单元只支持单精度。ARM64还增加了专门的AES、SHA-1、SHA-256加密指令。这些指令也许对普通应用帮助不大,但对特定领域的应用 来说价值无穷。

Objective-C Runtime变化

在Mac OS X 10.7操作系统中,苹果引入了标签指针,这种指针允许某些类和其少量实例数据完全存储在指针中。这样在使用某些类时(如NSNumber)就无需分配内 存,并提升性能。标签指针仅支持64位架构,一部分原因是受二进制兼容制约,另一部分原因是32位指针预留的数据空间不足。之前的iOS系统都不支持标签 指针,而在ARM64位架构中,Objective-C Runtime已包含了标签指针,因此也可以享受Mac系统所具备的便利了。

尽管指针为64位,但在实际使用中,这些位数并不是都用上了。例如X86-64的Mac OS X系统仅使用了其中的47位。而ARM64上占用得更少,目前只有33位。只要未被系统全部占用,这些指针就能用于存储数据。这是Objective-C Runtime演进史上最重要的变化之一。

另作他用的ISA指针

Objective-C对象是连续的内存块,这个内存块中第一个指针大小的部分称为ISA。一般来说,ISA是一个指向该对象所属类的指针。

不过这么大的空间仅作为指针有点儿浪费,尤其是在64位CPU上。运行iOS的ARM64目前仅使用了一个指针的33位,而其余31位则另作他用。另外,类 指针还需要对齐,这就释放了另外3位,于是ISA指针中共有34位可另作他用。苹果的ARM64 Runtime正是利用了这一点使性能有了大幅提升。

不过,最重要的性能提升也许得益于内联引用计数。几乎所有的Objective-C对象都采用引用计数(NSString文字等常量对象是例外),这使得修 改引用计数的操作极为频繁。尤其对于采用自动引用计数的系统来说,资源消耗非常高。因此,提高引用计数的性能变得至关重要。

以往,引用计数 并不存储在对象中,因为ISA空间不足。当然,我们可以为每个对象专门分配一块空间用于保存引用计数,但这会占用更多的内存空间。对今天的系统来说,额外 的空间也许不算什么,但对早期的Objective-C系统影响严重。由于这样的原因,引用计数被系统存储在了一个单独的表中。

于是,当为对象增加新引用时,Runtime会执行以下操作:

  • 获取全局计数哈希表;
  • 锁定表以确保线程操作的安全;
  • 查询表中对象的计数;
  • 增加计数,并将新值重新存储到表中;
  • 解除锁定。

这些操作非常缓慢!即使用最快的哈希表,也没有直接从内存访问来得快。

对于ARM64,ISA字段中的19位用于内联存储引用计数。这意味着,增加对象引用的步骤可以简化为:在ISA字段正确部分执行原子操作加一。

仅此而已!速度将会快得多!当然,还有一些极端情况需要处理,真正的操作会略微复杂一些。

以往在回收Objective-C对象时,需要执行大量清除工作,跳过其中不必要的步骤,就可以提高性能。利用剩余的可用位,还有其他一些方法可使回收对象的速度更快。

将上面提到的所有优化集合在一起,ARM64的性能优势就变得非常明显了。根据我自己不太严格的性能测试显示,在iPhone 5S 32位模式下,基本对象的创建和销毁大约需要380ns,而在64位模式,仅需200ns。如果某类实例曾有过弱引用并与对象集合关联,32位模式下的耗 时上升至约480ns,而64位模式下保持不变,仍为200ns。

结束语

“64位”A7处理器既不是一种营销手段,也不是一个能催生创新应用的巨大突破。真实的情况是,它介于两者之间,就像我们经常见到的技术演进一样。

ARM64让某些应用的计算速度快了一些,大多数应用占用的内存变得更多,也让一些编程技巧更容易使用。不过从总体上看,还不算重大变化。

在向64位过渡的过程中,ARM架构增加了寄存器的数量,并对其使用做了修改。改进了指令集,令其性能优于过去的32位处理器。

苹果也从这种过渡中改变自己。最大的变化是内联引用计数,这一改变使得在通常情况下,无需进行代价昂贵的哈希表查找,让对象的创建和销毁代价都减少了近一半。标签指针也有利于性能提升并减少了内存占用。

ARM64使苹果的硬件如虎添翼,尽管我们都知道这一天迟早会到来,但没想到这么快,真是很棒!

本文作者Mike Ash是Plausible Labs的软件工程师,同时也是一名滑翔机驾驶员,感谢Mike对本文的授权。原文链接:http://www.mikeash.com/pyblog /friday-qa-2013-09-27-arm64-and-you.html


http://www.ppmy.cn/news/252356.html

相关文章

iphone5s 黑苹果死机 刷机记录

1、问题现象: 启动时显示白屏黑苹果,反复自动重启。 2、解决办法:刷机,参考:http://www.vipcn.com/shoujisoft/shoujijiqiao/387535.html 3、刷机准备: 1)软件:iTunes 2&#xff0…

不越狱破解A1528 iPhone5s移动联通4G网络

iPhone5s A1528 无法支持联通4G 一直是用户心中的痛,但是A1528在硬件上是支持的。因此,它还有有希望用上联通4G。此前 A1528 iPhone5s越狱后破解联通4G的教程对于一些不愿且不懂越狱的用户就显示很繁琐,接下来,为大家介绍不越狱破…

iPhone5s-iOS11降级

iOS最新系统为iOS11,手机中最低支持到5s,喜欢尝鲜的我早早的安装了beta版,安装成功后就感觉反应变慢,一直使用到现在,新买的8Plus也到手了,决定将5s降级。 降级步骤: 肯定是先下载好降级包了,但…

Android系统的Ashmem匿名共享内存子系统分析(4)- Ashmem子系统的 Java访问接口

声明 其实对于Android系统的Ashmem匿名共享内存系统早就有分析的想法,记得2019年6、7月份Mr.Deng离职期间约定一起对其进行研究的,但因为我个人问题没能实施这个计划,留下些许遗憾…文中参考了很多书籍及博客内容,可能涉及的比较…

iPhone5s配置网易邮箱

1.在“设置-邮件、通讯录、日历-添加账户”选择163邮箱,填写正确的信息后,不管提示什么,都存储下来,然后进行设置 2.首先要在网页版的163邮箱进行设置,将POP3/SMTP/IMAP全部勾选,如果不能勾选,…

Iphone 5s 刷机 ---- 尝试篇

一、前言 两三年前有过一个魅族手机被锁的经历仍记忆犹新,有天手机屏幕锁密码突然忘了,经过几次尝试 结果手机就锁死了,要登录魅族账号才能解开,可是这个账号的密码我也忘了,再加之注册魅族账号的那个手机号换了。感觉…

iphone 5s设置方法

由于onavo在china地区被限制了,如果你直接安装app会出现“this app cant use in your country”的提示 由于天朝封杀了onavo,导致该应用下载仍然无法使用,但是现在可以通过直接安装onavo的描述文件不安装应用程序达到目的,亲测可用…

iPhone 5s指纹识别存在什么安全隐患?

当地时间9月10日,苹果终于发布了万众瞩目的iPhone 5s和iPhone 5c。其中,iPhone 5s一如此前剧透般在Home键上加入了全新指纹识别模块,原本HOME键内部的方框也随之消失,取而代之的是一个不锈钢指纹检测环。 据悉,在配置了…