什么叫做深度学习框架,其作用是什么
深度学习框架是一种为了深度学习开发而生的工具,库和预训练模型等资源的总和。有了这种框架,看似复杂神秘的深度学习模型开发被大大简化,成为AI开发者的必用利器。
目前,TensorFlow和PyTorch明显领先,其他框架势微。如下图所示,基于TensorFlow和PyTorch的开源项目,明显领先其它框架。
注:Keras不算完整的AI框架,另外KerasAPI已经成为TF2.0的高层API。TensorFlow是市场需求最多,也是增长最快的框架,它的领先地位不会在短期内被颠覆。
PyTorch也在迅速发展,尤其在学术界,越来越多的论文代码基于PyTorch。它在工作列表中的大量增加证明了其使用和需求的增加。
TensorFlow和PyTorch两种框架未来相当时间内会趋同共存。现在PyTorch的在学术界广泛采用;而TensorFlow依赖强大的部署能力,是应用首选。
未来TensorFlow2.0大大提高易用性(集成Keras,支持动态库EagerExecution等);PyTorch也在利用ONNX提高部署能力。
TensorFlow和PyTorch会越来越趋同。TensorFlow和PyTorch已是未来几年最主流的深度学习框架。
围绕这两种框架的软,硬件,和开发者生态将会迅猛发展,新框架越来越难以成长,其他框架差距越来越大。
谷歌人工智能写作项目:小发猫
如何选择深度学习框架 TensorFlow/Torch/Mxnet/Theano
深度学习目前的应用领域很多,主要是计算机视觉和自然语言处理,以及各种预测等A8U神经网络。
对于计算机视觉,可以做图像分类、目标检测、视频中的目标检测等,对于自然语言处理,可以做语音识别、语音合成、对话系统、机器翻译、文章摘要、情感分析等。
对于刚入行深度学习,想从事人工智能工业应用和研发的小白来说,选择一个适合自己的深度学习框架显得尤为重要。
那么在选择深度学习框架的时候,要注意哪些内容呢?通常我们在选择框架时要考虑易用性、性能、社区、平台支持等问题。
初学者应该考虑容易上手的框架,偏工业应用的开发者可以考虑使用稳定性高、性能好的框架,偏研究性的开发者,一般选择易用而且有领先的模型基线的框架。
目前这个阶段,TensorFlow因为背靠谷歌公司这座靠山,再加上拥有庞大的开发者群体,而且采用了称为“可执行的伪代码”的Python语言,成为最受欢迎的主流框架之一。
一些外围的第三方库(如Keras、TFLearn)也基于它实现了很多成果,Keras还得到TensorFlow官方的支持。
TensorFlow支持的上层语言也在逐渐扩大,对于不同工程背景的人转入的门槛正在降低。
因此,对于刚入行深度学习的小白,TensorFlow是一个非常好的选择,掌握TensorFlow对以后的求职发展很有帮助。
为了让大家更快地掌握深度学习技术,成为人工智能领域高端人才,中公教育联合中科院自动化研究所专家,强力推出人工智能《深度学习》,让大家学有所成、真正掌握机器学习模型以及算法背后的原理。
什么是神经网络控制技术
神经网络控制技术是一项复杂的系统控制技术,一般应用在变频器的控制中,它是通过对系统的辨识、运算后对变频器进行控制的一种新技术。
而且神经网络控制可以同时控制多个变频器,所以应用在多个变频器级联控制中比较合适。
python深度学习框架学哪个
Python深度学习生态系统在这几年中的演变实属惊艳。pylearn2,已经不再被积极地开发或者维护,大量的深度学习库开始接替它的位置。这些库每一个都各有千秋。
我们已经在indico的产品或者开发中使用了以下列表中的大部分的技术,但是对于剩下一些我们没有使用的,我将会借鉴他人的经验来帮助给出Python深度学习生态系统的清晰的、详尽的理解。
确切地说,我们将会关注:TheanoLasagneBlocksTensorFlowKerasMXNetPyTorch下面是对这7大Python深度学习框架的描述以及优缺点的介绍。
Theano描述:Theano是一个Python库,允许你定义、优化并且有效地评估涉及到多维数组的数学表达式。它与GPUs一起工作并且在符号微分方面表现优秀。
概述:Theano是数值计算的主力,它支持了许多我们列表当中的其他的深度学习框架。
Theano由FrédéricBastien创建,这是蒙特利尔大学机器学习研究所(MILA)背后的一个非常优秀的研究团队。
它的API水平较低,并且为了写出效率高的Theano,你需要对隐藏在其他框架幕后的算法相当的熟悉。
如果你有着丰富的学术机器学习知识,正在寻找你的模型的精细的控制方法,或者想要实现一个新奇的或者不同寻常的模型,Theano是你的首选库。总而言之,为了灵活性,Theano牺牲了易用性。
优点:灵活正确使用时的高性能缺点:较高的学习难度低水平的API编译复杂的符号图可能很慢Lasagne描述:在Theano上建立和训练神经网络的轻量级库概述:因为Theano致力于成为符号数学中最先且最好的库,Lasagne提供了在Theano顶部的抽象,这使得它更适合于深度学习。
它主要由当前DeepMind研究科学家SanderDieleman编写并维护。
Lasagne并非是根据符号变量之间的函数关系来指定网络模型,而是允许用户在层级思考,为用户提供了例如「Conv2DLayer」和「DropoutLayer」的构建块。
Lasagne在牺牲了很少的灵活性的同时,提供了丰富的公共组件来帮助图层定义、图层初始化、模型正则化、模型监控和模型训练。
优点:仍旧非常灵活比Theano更高级的抽象文档和代码中包含了各种PastaPuns缺点:社区小Blocks描述:用于构建和训练神经网络的Theano框架概述:与Lasagne类似,Blocks是在Theano顶部添加一个抽象层使深度学习模型比编写原始的Theano更清晰、更简单、定义更加标准化。
它是由蒙特利尔大学机器学习研究所(MILA)编写,其中一些人为搭建Theano和第一个神经网络定义的高级接口(已经淘汰的PyLearn2)贡献了自己的一份力量。
比起Lasagne,Blocks灵活一点,代价是入门台阶较高,想要高效的使用它有不小的难度。
除此之外,Blocks对递归神经网络架构(recurrentneuralnetworkarchitectures)有很好的支持,所以如果你有兴趣探索这种类型的模型,它值得一看。
除了TensorFlow,对于许多我们已经部署在indico产品中的API,Blocks是其首选库。
优点:仍旧非常灵活比Theano更高级的抽象易于测试缺点:较高的学习难度更小的社区TensorFlow描述:用于数值计算的使用数据流图的开源软件库概述:TensorFlow是较低级别的符号库(比如Theano)和较高级别的网络规范库(比如Blocks和Lasagne)的混合。
即使它是Python深度学习库集合的最新成员,在GoogleBrain团队支持下,它可能已经是最大的活跃社区了。
它支持在多GPUs上运行深度学习模型,为高效的数据流水线提供使用程序,并具有用于模型的检查,可视化和序列化的内置模块。
最近,TensorFlow团队决定支持Keras(我们列表中下一个深度学习库)。
虽然TensorFlow有着自己的缺点,但是社区似乎同意这一决定,社区的庞大规模和项目背后巨大的动力意味着学习TensorFlow是一次安全的赌注。
因此,TensorFlow是我们今天在indico选择的深度学习库。
优点:由软件巨头Google支持非常大的社区低级和高级接口网络训练比基于Theano配置更快的模型编译完全地多GPU支持缺点:虽然Tensorflow正在追赶,但是最初在许多基准上比基于Theano的慢。
RNN支持仍不如TheanoKeras描述:Python的深度学习库。支持Convnets、递归神经网络等。在Theano或者TensorFlow上运行。
概述:Keras也许是水平最高,对用户最友好的库了。由FrancisChollet(GoogleBrain团队中的另一个成员)编写和维护。
它允许用户选择其所构建的模型是在Theano上或是在TensorFlow上的符号图上执行。
Keras的用户界面受启发于Torch,所以如果你以前有过使用Lua语言的机器学习经验,Keras绝对值得一看。由于部分非常优秀的文档和其相对易用性,Keras的社区非常大并且非常活跃。
最近,TensorFlow团队宣布计划与Keras一起支持内置,所以很快Keras将是TensorFlow项目的一个分组。
优点:可供选择的Theano或者TensorFlow后端直观、高级别的端口更易学习缺点:不太灵活,比其他选择更规范MXNet描述:MXNet是一个旨在提高效率和灵活性的深度学习框架。
概述:MXNet是亚马逊(Amazon)选择的深度学习库,并且也许是最优秀的库。
它拥有类似于Theano和TensorFlow的数据流图,为多GPU配置提供了良好的配置,有着类似于Lasagne和Blocks更高级别的模型构建块,并且可以在你可以想象的任何硬件上运行(包括手机)。
对Python的支持只是其冰山一角—MXNet同样提供了对R、Julia、C++、Scala、Matlab,和Javascript的接口。
如果你正在寻找最佳的性能,选择MXNet吧,但是你必须愿意处理与之相对的一些MXNet的怪癖。
优点:速度的标杆非常灵活缺点:最小的社区比Theano更困难的学习难度PyTorch描述:Python中的张量(Tensors)和动态神经网络,有着强大的GPU加速。
概述:刚刚放出一段时间,PyTorch就已经是我们Python深度学习框架列表中的一个新的成员了。
它是从Lua的Torch库到Python的松散端口,由于它由Facebook的人工智能研究团队(ArtificialIntelligenceResearchteam(FAIR))支持且因为它用于处理动态计算图(Theano,TensorFlow或者其他衍生品没有的特性,编译者注:现在TensorFlow好像支持动态计算图),它变得非常的有名。
PyTorch在Python深度学习生态系统将扮演怎样的角色还不得而知,但所有的迹象都表明,PyTorch是我们列表中其他框架的一个非常棒的选择。
优点:来自Facebook组织的支持完全地对动态图的支持高级和低级API的混合缺点:比其他选择,PyTorch还不太成熟。
BP神经网络的可行性分析
神经网络的是我的毕业论文的一部分4.人工神经网络人的思维有逻辑性和直观性两种不同的基本方式。
逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理。这一过程可以写成串行的指令,让计算机执行。
然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。
这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。人工神经网络就是模拟人思维的第二种方式。
这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。
4.1人工神经网络学习的原理人工神经网络首先要以一定的学习准则进行学习,然后才能工作。
现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。
所以网络学习的准则应该是:如果网络做出错误的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。
首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图像模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。
在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能做出正确的判断。
如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。
如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。
这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够做出迅速、准确的判断和识别。
一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。
4.2人工神经网络的优缺点人工神经网络由于模拟了大脑神经元的组织方式而具有了人脑功能的一些基本特征,为人工智能的研究开辟了新的途径,神经网络具有的优点在于:(1)并行分布性处理因为人工神经网络中的神经元排列并不是杂乱无章的,往往是分层或以一种有规律的序列排列,信号可以同时到达一批神经元的输入端,这种结构非常适合并行计算。
同时如果将每一个神经元看作是一个小的处理单元,则整个系统可以是一个分布式计算系统,这样就避免了以往的“匹配冲突”,“组合爆炸”和“无穷递归”等题,推理速度快。
(2)可学习性一个相对很小的人工神经网络可存储大量的专家知识,并且能根据学习算法,或者利用样本指导系统来模拟现实环境(称为有教师学习),或者对输入进行自适应学习(称为无教师学习),不断地自动学习,完善知识的存储。
(3)鲁棒性和容错性由于采用大量的神经元及其相互连接,具有联想记忆与联想映射能力,可以增强专家系统的容错能力,人工神经网络中少量的神经元发生失效或错误,不会对系统整体功能带来严重的影响。
而且克服了传统专家系统中存在的“知识窄台阶”问题。(4)泛化能力人工神经网络是一类大规模的非线形系统,这就提供了系统自组织和协同的潜力。它能充分逼近复杂的非线形关系。
当输入发生较小变化,其输出能够与原输入产生的输出保持相当小的差距。
(5)具有统一的内部知识表示形式,任何知识规则都可以通过对范例的学习存储于同一个神经网络的各连接权值中,便于知识库的组织管理,通用性强。
虽然人工神经网络有很多优点,但基于其固有的内在机理,人工神经网络也不可避免的存在自己的弱点:(1)最严重的问题是没能力来解释自己的推理过程和推理依据。
(2)神经网络不能向用户提出必要的询问,而且当数据不充分的时候,神经网络就无法进行工作。(3)神经网络把一切问题的特征都变为数字,把一切推理都变为数值计算,其结果势必是丢失信息。
(4)神经网络的理论和学习算法还有待于进一步完善和提高。4.3神经网络的发展趋势及在柴油机故障诊断中的可行性神经网络为现代复杂大系统的状态监测和故障诊断提供了全新的理论方法和技术实现手段。
神经网络专家系统是一类新的知识表达体系,与传统专家系统的高层逻辑模型不同,它是一种低层数值模型,信息处理是通过大量的简单处理元件(结点)之间的相互作用而进行的。
由于它的分布式信息保持方式,为专家系统知识的获取与表达以及推理提供了全新的方式。
它将逻辑推理与数值运算相结合,利用神经网络的学习功能、联想记忆功能、分布式并行信息处理功能,解决诊断系统中的不确定性知识表示、获取和并行推理等问题。
通过对经验样本的学习,将专家知识以权值和阈值的形式存储在网络中,并且利用网络的信息保持性来完成不精确诊断推理,较好地模拟了专家凭经验、直觉而不是复杂的计算的推理过程。
但是,该技术是一个多学科知识交叉应用的领域,是一个不十分成熟的学科。一方面,装备的故障相当复杂;另一方面,人工神经网络本身尚有诸多不足之处:(1)受限于脑科学的已有研究成果。
由于生理实验的困难性,目前对于人脑思维与记忆机制的认识还很肤浅。(2)尚未建立起完整成熟的理论体系。
目前已提出了众多的人工神经网络模型,归纳起来,这些模型一般都是一个由结点及其互连构成的有向拓扑网,结点间互连强度所构成的矩阵,可通过某种学习策略建立起来。但仅这一共性,不足以构成一个完整的体系。
这些学习策略大多是各行其是而无法统一于一个完整的框架之中。(3)带有浓厚的策略色彩。这是在没有统一的基础理论支持下,为解决某些应用,而诱发出的自然结果。(4)与传统计算技术的接口不成熟。
人工神经网络技术决不能全面替代传统计算技术,而只能在某些方面与之互补,从而需要进一步解决与传统计算技术的接口问题,才能获得自身的发展。
虽然人工神经网络目前存在诸多不足,但是神经网络和传统专家系统相结合的智能故障诊断技术仍将是以后研究与应用的热点。它最大限度地发挥两者的优势。
神经网络擅长数值计算,适合进行浅层次的经验推理;专家系统的特点是符号推理,适合进行深层次的逻辑推理。
智能系统以并行工作方式运行,既扩大了状态监测和故障诊断的范围,又可满足状态监测和故障诊断的实时性要求。既强调符号推理,又注重数值计算,因此能适应当前故障诊断系统的基本特征和发展趋势。
随着人工神经网络的不断发展与完善,它将在智能故障诊断中得到广泛的应用。根据神经网络上述的各类优缺点,目前有将神经网络与传统的专家系统结合起来的研究倾向,建造所谓的神经网络专家系统。
理论分析与使用实践表明,神经网络专家系统较好地结合了两者的优点而得到更广泛的研究和应用。离心式制冷压缩机的构造和工作原理与离心式鼓风机极为相似。
但它的工作原理与活塞式压缩机有根本的区别,它不是利用汽缸容积减小的方式来提高汽体的压力,而是依靠动能的变化来提高汽体压力。
离心式压缩机具有带叶片的工作轮,当工作轮转动时,叶片就带动汽体运动或者使汽体得到动能,然后使部分动能转化为压力能从而提高汽体的压力。
这种压缩机由于它工作时不断地将制冷剂蒸汽吸入,又不断地沿半径方向被甩出去,所以称这种型式的压缩机为离心式压缩机。其中根据压缩机中安装的工作轮数量的多少,分为单级式和多级式。
如果只有一个工作轮,就称为单级离心式压缩机,如果是由几个工作轮串联而组成,就称为多级离心式压缩机。在空调中,由于压力增高较少,所以一般都是采用单级,其它方面所用的离心式制冷压缩机大都是多级的。
单级离心式制冷压缩机的构造主要由工作轮、扩压器和蜗壳等所组成。
压缩机工作时制冷剂蒸汽由吸汽口轴向进入吸汽室,并在吸汽室的导流作用引导由蒸发器(或中间冷却器)来的制冷剂蒸汽均匀地进入高速旋转的工作轮3(工作轮也称叶轮,它是离心式制冷压缩机的重要部件,因为只有通过工作轮才能将能量传给汽体)。
汽体在叶片作用下,一边跟着工作轮作高速旋转,一边由于受离心力的作用,在叶片槽道中作扩压流动,从而使汽体的压力和速度都得到提高。
由工作轮出来的汽体再进入截面积逐渐扩大的扩压器4(因为汽体从工作轮流出时具有较高的流速,扩压器便把动能部分地转化为压力能,从而提高汽体的压力)。汽体流过扩压器时速度减小,而压力则进一步提高。
经扩压器后汽体汇集到蜗壳中,再经排气口引导至中间冷却器或冷凝器中。
二、离心式制冷压缩机的特点与特性离心式制冷压缩机与活塞式制冷压缩机相比较,具有下列优点:(1)单机制冷量大,在制冷量相同时它的体积小,占地面积少,重量较活塞式轻5~8倍。
(2)由于它没有汽阀活塞环等易损部件,又没有曲柄连杆机构,因而工作可靠、运转平稳、噪音小、操作简单、维护费用低。(3)工作轮和机壳之间没有摩擦,无需润滑。
故制冷剂蒸汽与润滑油不接触,从而提高了蒸发器和冷凝器的传热性能。(4)能经济方便的调节制冷量且调节的范围较大。(5)对制冷剂的适应性差,一台结构一定的离心式制冷压缩机只能适应一种制冷剂。
(6)由于适宜采用分子量比较大的制冷剂,故只适用于大制冷量,一般都在25~30万大卡/时以上。如制冷量太少,则要求流量小,流道窄,从而使流动阻力大,效率低。
但近年来经过不断改进,用于空调的离心式制冷压缩机,单机制冷量可以小到10万大卡/时左右。制冷与冷凝温度、蒸发温度的关系。
由物理学可知,回转体的动量矩的变化等于外力矩,则T=m(C2UR2-C1UR1)两边都乘以角速度ω,得Tω=m(C2UωR2-C1UωR1)也就是说主轴上的外加功率N为:N=m(U2C2U-U1C1U)上式两边同除以m则得叶轮给予单位质量制冷剂蒸汽的功即叶轮的理论能量头。
U2C2ω2C2UR1R2ω1C1U1C2rβ离心式制冷压缩机的特性是指理论能量头与流量之间变化关系,也可以表示成制冷W=U2C2U-U1C1U≈U2C2U(因为进口C1U≈0)又C2U=U2-C2rctgβC2r=Vυ1/(A2υ2)故有W=U22(1-Vυ1ctgβ)A2υ2U2式中:V—叶轮吸入蒸汽的容积流量(m3/s)υ1υ2——分别为叶轮入口和出口处的蒸汽比容(m3/kg)A2、U2—叶轮外缘出口面积(m2)与圆周速度(m/s)β—叶片安装角由上式可见,理论能量头W与压缩机结构、转速、冷凝温度、蒸发温度及叶轮吸入蒸汽容积流量有关。
对于结构一定、转速一定的压缩机来说,U2、A2、β皆为常量,则理论能量头W仅与流量V、蒸发温度、冷凝温度有关。
按照离心式制冷压缩机的特性,宜采用分子量比较大的制冷剂,目前离心式制冷机所用的制冷剂有F—11、F—12、F—22、F—113和F—114等。
我国目前在空调用离心式压缩机中应用得最广泛的是F—11和F—12,且通常是在蒸发温度不太低和大制冷量的情况下,选用离心式制冷压缩机。
此外,在石油化学工业中离心式的制冷压缩机则采用丙烯、乙烯作为制冷剂,只有制冷量特别大的离心式压缩机才用氨作为制冷剂。
三、离心式制冷压缩机的调节离心式制冷压缩机和其它制冷设备共同构成一个能量供给与消耗的统一系统。
制冷机组在运行时,只有当通过压缩机的制冷剂的流量与通过设备的流量相等时,以及压缩机所产生的能量头与制冷设备的阻力相适应时,制冷系统的工况才能保持稳定。
但是制冷机的负荷总是随外界条件与用户对冷量的使用情况而变化的,因此为了适应用户对冷负荷变化的需要和安全经济运行,就需要根据外界的变化对制冷机组进行调节,离心式制冷机组制冷量的调节有:1°改变压缩机的转速;2°采用可转动的进口导叶;3°改变冷凝器的进水量;4°进汽节流等几种方式,其中最常用的是转动进口导叶调节和进汽节流两种调节方法。
所谓转动进口导叶调节,就是转动压缩机进口处的导流叶片以使进入到叶轮去的汽体产生旋绕,从而使工作轮加给汽体的动能发生变化来调节制冷量。
所谓进汽节流调节,就是在压缩机前的进汽管道上安装一个调节阀,如要改变压缩机的工况时,就调节阀门的大小,通过节流使压缩机进口的压力降低,从而实现调节制冷量。
离心式压缩机制冷量的调节最经济有效的方法就是改变进口导叶角度,以改变蒸汽进入叶轮的速度方向(C1U)和流量V。但流量V必须控制在稳定工作范围内,以免效率下降。
Python的深度学习框架有哪些?
。
中公教育联合中科院专家打造的深度学习分八个阶段进行学习:第一阶段AI概述及前沿应用成果介绍深度学习的最新应用成果单层/深度学习与机器学习人工智能的关系及发展简第二阶段神经网络原理及TensorFlow实战梯度下降优化方法前馈神经网络的基本结构和训练过程反向传播算法TensorFlow开发环境安装“计算图”编程模型深度学习中图像识别的操作原理第三阶段循环神经网络原理及项目实战语言模型及词嵌入词嵌入的学习过程循环神经网络的基本结构时间序列反向传播算法长短时记忆网络(LSTM)的基本结构LSTM实现语言模型第四阶段生成式对抗网络原理及项目实战生成式对抗网络(GAN)的基本结构和原理GAN的训练过程GAN用于图片生成的实现第五阶段深度学习的分布式处理及项目实战多GPU并行实现分布式并行的环境搭建分布式并行实现第六阶段深度强化学习及项目实战强化学习介绍智能体Agent的深度决策机制(上)智能体Agent的深度决策机制(中)智能体Agent的深度决策机制(下)第七阶段车牌识别项目实战数据集介绍及项目需求分析OpenCV库介绍及车牌定位车牌定位车牌识别学员项目案例评讲第八阶段深度学习前沿技术简介深度学习前沿技术简介元学习迁移学习等详情查看深度学习。
大数据具体是学习什么内容呢?主要框架是什么?
首先,学习大数据是需要有java,python和R语言的基础。1)Java学习到什么样的程度才可以学习大数据呢?java需要学会javaSE即可。javaweb,javaee对于大数据用不到。
学会了javase就可以看懂hadoop框架。2)python是最容易学习的,难易程度:pythonjavaScala。
python不是比java更直观好理解么,因为会了Python还是要学习java的,你学会了java,再来学习python会很简单的,一周的时间就可以学会python。
3)R语言也可以学习,但是不推荐,因为java用的人最多,大数据的第一个框架Hadoop,底层全是Java写的。就算学会了R还是看不懂hadoop。
java在大数据中的作用是构成大数据的语言,大数据的第一个框架Hadoop以及其他大数据技术框架,底层语言全是Java写的,所以推荐首选学习java大数据开发学习路线:第一阶段:Hadoop生态架构技术1、语言基础Java:多理解和实践在Java虚拟机的内存管理、以及多线程、线程池、设计模式、并行化就可以,不需要深入掌握。
Linux:系统安装、基本命令、网络配置、Vim编辑器、进程管理、Shell脚本、虚拟机的菜单熟悉等等。Python:基础语法,数据结构,函数,条件判断,循环等基础知识。
2、环境准备这里介绍在windows电脑搭建完全分布式,1主2从。VMware虚拟机、Linux系统(Centos6.5)、Hadoop安装包,这里准备好Hadoop完全分布式集群环境。
3、MapReduceMapReduce分布式离线计算框架,是Hadoop核心编程模型。4、HDFS1.0/2.0HDFS能提供高吞吐量的数据访问,适合大规模数据集上的应用。
5、Yarn(Hadoop2.0)Yarn是一个资源调度平台,主要负责给任务分配资源。6、HiveHive是一个数据仓库,所有的数据都是存储在HDFS上的。使用Hive主要是写Hql。
7、SparkSpark是专为大规模数据处理而设计的快速通用的计算引擎。8、SparkStreamingSparkStreaming是实时处理框架,数据是一批一批的处理。
9、SparkHiveSpark作为Hive的计算引擎,将Hive的查询作为Spark的任务提交到Spark集群上进行计算,可以提高Hive查询的性能。
10、StormStorm是一个实时计算框架,Storm是对实时新增的每一条数据进行处理,是一条一条的处理,可以保证数据处理的时效性。
11、ZookeeperZookeeper是很多大数据框架的基础,是集群的管理者。12、HbaseHbase是一个Nosql数据库,是高可靠、面向列的、可伸缩的、分布式的数据库。
13、Kafkakafka是一个消息中间件,作为一个中间缓冲层。14、FlumeFlume常见的就是采集应用产生的日志文件中的数据,一般有两个流程。
一个是Flume采集数据存储到Kafka中,方便Storm或者SparkStreaming进行实时处理。
另一个流程是Flume采集的数据存储到HDFS上,为了后期使用hadoop或者spark进行离线处理。
第二阶段:数据挖掘算法1、中文分词开源分词库的离线和在线应用2、自然语言处理文本相关性算法3、推荐算法基于CB、CF,归一法,Mahout应用。
4、分类算法NB、SVM5、回归算法LR、DecisionTree6、聚类算法层次聚类、Kmeans7、神经网络与深度学习NN、Tensorflow以上就是学习Hadoop开发的一个详细路线,如果需要了解具体框架的开发技术,可咨询加米谷大数据老师,详细了解。
学习大数据开发需要掌握哪些技术呢?
(1)Java语言基础Java开发介绍、熟悉Eclipse开发工具、Java语言基础、Java流程控制、Java字符串、Java数组与类和对象、数字处理类与核心技术、I/O与反射、多线程、Swing程序与集合类(2)HTML、CSS与JavaPC端网站布局、HTML5+CSS3基础、WebApp页面布局、原生Java交互功能开发、Ajax异步交互、jQuery应用(3)JavaWeb和数据库数据库、JavaWeb开发核心、JavaWeb开发内幕Linux&Hadoop生态体系Linux体系、Hadoop离线计算大纲、分布式数据库Hbase、数据仓库Hive、数据迁移工具Sqoop、Flume分布式日志框架分布式计算框架和Spark&Strom生态体系(1)分布式计算框架Python编程语言、Scala编程语言、Spark大数据处理、Spark—Streaming大数据处理、Spark—Mlib机器学习、Spark—GraphX图计算、实战一:基于Spark的推荐系统(某一线公司真实项目)、实战二:新浪网()(2)storm技术架构体系Storm原理与基础、消息队列kafka、Redis工具、zookeeper详解、大数据项目实战数据获取、数据处理、数据分析、数据展现、数据应用大数据分析—AI(人工智能)DataAnalyze工作环境准备&数据分析基础、数据可视化、Python机器学习以上的回答希望对你有所帮助。
深度学习的学习框架是什么?
。
AI深度学习课纲1、了解AI及前沿应用成果; 2、掌握人工神经网络及卷积神经网络原理; 3、循环神经网络原理及项目实战;4、生成式对抗网络原理及项目实战; 5、深度学习的分布式处理及项目实战; 6、深度强化学习及项目实战; 7、企业级项目实战-车牌识别项目实战;8、深度学习最新前沿技术简介。
机器学习的基本框架体系是什么?并分模块进行阐述。
Boehm:运用现代科学技术知识来设计并构造计算机程序及为开发、运行和维护这些程序所必需的相关文件资料。
IEEE在软件工程术语汇编中的定义:软件工程是:1.将系统化的、严格约束的、可量化的方法应用于软件的开发、运行和维护,即将工程化应用于软件;2.在1中所述方法的研究FritzBauer在NATO会议上给出的定义:建立并使用完善的工程化原则,以较经济的手段获得能在实际机器上有效运行的可靠软件的一系列方法。
目前比较认可的一种定义认为:软件工程是研究和应用如何以系统性的、规范化的、可定量的过程化方法去开发和维护软件,以及如何把经过时间考验而证明正确的管理技术和当前能够得到的最好的技术方法结合起来。
《计算机科学技术百科全书》中的定义:软件工程是应用计算机科学、数学及管理科学等原理,开发软件的工程。软件工程借鉴传统工程的原则、方法,以提高质量、降低成本。
其中,计算机科学、数学用于构建模型与算法,工程科学用于制定规范、设计范型(paradigm)、评估成本及确定权衡,管理科学用于计划、资源、质量、成本等管理。
软件工程学的内容软件工程学的主要内容是软件开发技术和软件工程管理.软件开发技术包含软件工程方法学、软件工具和软件开发环境;软件工程管理学包含软件工程经济学和软件管理学。
软件工程基本原理著名软件工程专家B.Boehm综合有关专家和学者的意见并总结了多年来开发软件的经验,于1983年在一篇论文中提出了软件工程的七条基本原理。(1)用分阶段的生存周期计划进行严格的管理。
(2)坚持进行阶段评审。(3)实行严格的产品控制。(4)采用现代程序设计技术。(5)软件工程结果应能清楚地审查。(6)开发小组的人员应该少而精。(7)承认不断改进软件工程实践的必要性。
B.Boehm指出,遵循前六条基本原理,能够实现软件的工程化生产;按照第七条原理,不仅要积极主动地采纳新的软件技术,而且要注意不断总结经验。
软件工程(SoftWareEngineering)的框架可概括为:目标、过程和原则。(1)软件工程目标:生产具有正确性、可用性以及开销合宜的产品。正确性指软件产品达到预期功能的程度。
可用性指软件基本结构、实现及文档为用户可用的程度。开销合宜是指软件开发、运行的整个开销满足用户要求的程度。
这些目标的实现不论在理论上还是在实践中均存在很多待解决的问题,它们形成了对过程、过程模型及工程方法选取的约束。(2)软件工程过程:生产一个最终能满足需求且达到工程目标的软件产品所需要的步骤。
软件工程过程主要包括开发过程、运作过程、维护过程。它们覆盖了需求、设计、实现、确认以及维护等活动。需求活动包括问题分析和需求分析。问题分析获取需求定义,又称软件需求规约。需求分析生成功能规约。
设计活动一般包括概要设计和详细设计。概要设计建立整个软件系统结构,包括子系统、模块以及相关层次的说明、每一模块的接口定义。详细设计产生程序员可用的模块说明,包括每一模块中数据结构说明及加工描述。
实现活动把设计结果转换为可执行的程序代码。确认活动贯穿于整个开发过程,实现完成后的确认,保证最终产品满足用户的要求。维护活动包括使用过程中的扩充、修改与完善。
伴随以上过程,还有管理过程、支持过程、培训过程等。(3)软件工程的原则是指围绕工程设计、工程支持以及工程管理在软件开发过程中必须遵循的原则。
软件工程必须遵循什么原则围绕工程设计、工程支持以及工程管理已提出了以下四条基本原则:(1)选取适宜的开发模型该原则与系统设计有关。
在系统设计中,软件需求、硬件需求以及其它因素间是相互制约和影响的,经常需要权衡。因此,必需认识需求定义的易变性,采用适当的开发模型,保证软件产品满足用户的要求。
(2)采用合适的设计方法在软件设计中,通常需要考虑软件的模块化、抽象与信息隐蔽、局部化、一致性以及适应性等特征。合适的设计方法有助于这些特征的实现,以达到软件工程的目标。
(3)提供高质量的工程支撑工欲善其事,必先利其器。在软件工程中,软件工具与环境对软件过程的支持颇为重要。软件工程项目的质量与开销直接取决于对软件工程所提供的支撑质量和效用。
(4)重视软件工程的管理软件工程的管理直接影响可用资源的有效利用,生产满足目标的软件产品以及提高软件组织的生产能力等问题。因此,仅当软件过程予以有效管理时,才能实现有效的软件工程。
软件工程是指导计算机软件开发和维护的工程学科。采用工程的概念、原理、技术和方法来开发与维护软件,把经过时间考验而证明正确的管理技术和当前能够得到的最好的技术方法结合起来,这就是软件工程。