有两个容量分别为 x升 和 y升 的水壶以及无限多的水。请判断能否通过使用这两个水壶,从而可以得到恰好 z升 的水?
如果可以,最后请用以上水壶中的一或两个来盛放取得的 z升 水。
你允许:
- 装满任意一个水壶
- 清空任意一个水壶
- 从一个水壶向另外一个水壶倒水,直到装满或者倒空
示例 1: (From the famous "Die Hard" example)
输入: x = 3, y = 5, z = 4 输出: True
示例 2:
输入: x = 2, y = 6, z = 5 输出: False
能不能使容器中的水刚好为z升。可以用一个公式来表达:z = m * x + n * y其中m,n为舀水和倒水的次数,正数表示往里舀水,负数表示往外倒水,那么题目中的例子可以写成: 4 = (-2) * 3 + 2 * 5,即3升的水罐往外倒了两次水,5升水罐往里舀了两次水。那么问题就变成了对于任意给定的x,y,z,存不存在m和n使得上面的等式成立。根据裴蜀定理,ax + by = d的解为 d = gcd(x, y),那么我们只要只要z % d == 0,上面的等式就有解,所以问题就迎刃而解了,只要看z是不是x和y的最大公约数的倍数就行了,还有个限制条件x + y >= z,因为x和y不可能称出比它们之和还多的水。
class Solution {
public:
bool canMeasureWater(int x, int y, int z) {
return z == 0 || (x + y >= z && z % gcd(x, y) == 0);
}
int gcd(int x, int y) {
return y == 0 ? x : gcd(y, x % y);
}
};