C++中的智能指针

news/2025/2/9 1:40:45/

1.RAII 与引用计数

了解 Objective-C/Swift 的程序员应该知道引用计数的概念。引用计数这种计数是为了防止内存泄露而产生的。 基本想法是对于动态分配的对象,进行引用计数,每当增加一次对同一个对象的引用,那么引用对象的引用计数就会增加一次, 每删除一次引用,引用计数就会减一,当一个对象的引用计数减为零时,就自动删除指向的堆内存。

在传统 C++ 中,『记得』手动释放资源,总不是最佳实践。因为我们很有可能就忘记了去释放资源而导致泄露。 所以通常的做法是对于一个对象而言,我们在构造函数的时候申请空间,而在析构函数(在离开作用域时调用)的时候释放空间, 也就是我们常说的 RAII 资源获取即初始化技术。

凡事都有例外,我们总会有需要将对象在自由存储上分配的需求,在传统 C++ 里我们只好使用 new 和 delete 去 『记得』对资源进行释放。而 C++11 引入了智能指针的概念,使用了引用计数的想法,让程序员不再需要关心手动释放内存。 这些智能指针包括 std::shared_ptr/std::unique_ptr/std::weak_ptr,使用它们需要包含头文件 <memory>。

注意:引用计数不是垃圾回收,引用计数能够尽快收回不再被使用的对象,同时在回收的过程中也不会造成长时间的等待, 更能够清晰明确的表明资源的生命周期。

2.智能指针

从比较简单的层面来看,智能指针是RAII(Resource Acquisition Is Initialization,资源获取即初始化)机制对普通指针进行的一层封装。这样使得智能指针的行为动作像一个指针,本质上却是一个对象,这样可以方便管理一个对象的生命周期。

在c++中,一共定义了4种类型的智能指针:auto_ptr、unique_ptr、shared_ptr 和 weak_ptr。其中,auto_ptr 在 C++11已被摒弃,在C++17中已经移除不可用。下文对后三种智能指针进行对比。

2.1std::shared_ptr

std::shared_ptr 是一种智能指针,它能够记录多少个 shared_ptr 共同指向一个对象,从而消除显式的调用 delete,当引用计数变为零的时候就会将对象自动删除。

但还不够,因为使用 std::shared_ptr 仍然需要使用 new 来调用,这使得代码出现了某种程度上的不对称。

std::make_shared 就能够用来消除显式的使用 new,所以std::make_shared 会分配创建传入参数中的对象, 并返回这个对象类型的std::shared_ptr指针。例如:

#include<iostream>
#include<memory>
voidfoo(std::shared_ptr<int> i){(*i)++;
}
int main(){
// auto pointer = new int(10); // illegal, no direct assignment
// Constructed a std::shared_ptr
auto pointer = std::make_shared<int>(10);
foo(pointer);std::cout << *pointer << std::endl; // 11
// The shared_ptr will be destructed before leaving the scope
return0;
}

std::shared_ptr 可以通过 get() 方法来获取原始指针,通过 reset() 来减少一个引用计数, 并通过use_count()来查看一个对象的引用计数。例如:

auto pointer = std::make_shared<int>(10);
auto pointer2 = pointer; // 引用计数+1
auto pointer3 = pointer; // 引用计数+1
int *p = pointer.get();  // 这样不会增加引用计数
std::cout << "pointer.use_count() = " << pointer.use_count() << std::endl;   // 3
std::cout << "pointer2.use_count() = " << pointer2.use_count() << std::endl; // 3
std::cout << "pointer3.use_count() = " << pointer3.use_count() << std::endl; // 3pointer2.reset();
std::cout << "reset pointer2:" << std::endl;
std::cout << "pointer.use_count() = " << pointer.use_count() << std::endl;   // 2
std::cout << "pointer2.use_count() = "<< pointer2.use_count() << std::endl;           // pointer2 已 reset; 0
std::cout << "pointer3.use_count() = " << pointer3.use_count() << std::endl; // 2
pointer3.reset();
std::cout << "reset pointer3:" << std::endl;
std::cout << "pointer.use_count() = " << pointer.use_count() << std::endl;   // 1
std::cout << "pointer2.use_count() = " << pointer2.use_count() << std::endl; // 0
std::cout << "pointer3.use_count() = "<< pointer3.use_count() << std::endl;           // pointer3 已 reset; 0

2.2std::unique_ptr

std::unique_ptr 是一种独占的智能指针,它禁止其他智能指针与其共享同一个对象,从而保证代码的安全:

std::unique_ptr<int> pointer = std::make_unique<int>(10); //make_unique 从C++14开始引入
std::unique_ptr<int> pointer2 = pointer; // 非法
make_unique 并不复杂,C++11 没有提供 std::make_unique,可以自行实现:

至于为什么没有提供,C++ 标准委员会主席 Herb Sutter 在他的博客中提到原因是因为『被他们忘记了』。

既然是独占,换句话说就是不可复制。但是,我们可以利用 std::move 将其转移给其他的 unique_ptr,例如:

#include<iostream>
#include<memory>struct Foo {
Foo() { std::cout << "Foo::Foo" << std::endl; }~Foo() { std::cout << "Foo::~Foo" << std::endl; }
voidfoo(){ std::cout << "Foo::foo" << std::endl; }
};voidf(const Foo &){std::cout << "f(const Foo&)" << std::endl;
}int main(){
std::unique_ptr<Foo> p1(std::make_unique<Foo>());
// p1 不空, 输出
if (p1) p1->foo();{
std::unique_ptr<Foo> p2(std::move(p1));
// p2 不空, 输出
f(*p2);
// p2 不空, 输出
if(p2) p2->foo();
// p1 为空, 无输出
if(p1) p1->foo();p1 = std::move(p2);
// p2 为空, 无输出
if(p2) p2->foo();std::cout << "p2 被销毁" << std::endl;}
// p1 不空, 输出
if (p1) p1->foo();
// Foo 的实例会在离开作用域时被销毁
}

2.3 std::weak_ptr

如果你仔细思考 std::shared_ptr 就会发现依然存在着资源无法释放的问题。看下面这个例子:

struct A;
struct B;struct A {std::shared_ptr<B> pointer;~A() {std::cout << "A 被销毁" << std::endl;}
};
struct B {std::shared_ptr<A> pointer;~B() {std::cout << "B 被销毁" << std::endl;}
};
int main(){
auto a = std::make_shared<A>();
auto b = std::make_shared<B>();a->pointer = b;b->pointer = a;
}

运行结果是 A, B 都不会被销毁,这是因为 a,b 内部的 pointer 同时又引用了 a,b,这使得 a,b 的引用计数均变为了 2,而离开作用域时,a,b 智能指针被析构,却只能造成这块区域的引用计数减一,这样就导致了 a,b 对象指向的内存区域引用计数不为零,而外部已经没有办法找到这块区域了,也就造成了内存泄露,如下图1所示:

解决这个问题的办法就是使用弱引用指针 std::weak_ptr,std::weak_ptr是一种弱引用(相比较而言 std::shared_ptr 就是一种强引用)。弱引用不会引起引用计数增加,当换用弱引用时候,最终的释放流程如图 2所示:

在上图中,最后一步只剩下 B,而 B 并没有任何智能指针引用它,因此这块内存资源也会被释放。

std::weak_ptr 没有 * 运算符和 -> 运算符,所以不能够对资源进行操作,它可以用于检查 std::shared_ptr 是否存在,其 expired() 方法能在资源未被释放时,会返回 false,否则返回 true;除此之外,它也可以用于获取指向原始对象的 std::shared_ptr 指针,其 lock() 方法在原始对象未被释放时,返回一个指向原始对象的 std::shared_ptr 指针,进而访问原始对象的资源,否则返回nullptr。

3.总结

智能指针这种技术并不新奇,在很多语言中都是一种常见的技术,现代 C++ 将这项技术引进,在一定程度上消除了 new/delete 的滥用,是一种更加成熟的编程范式。

4. 其它

  1. stackoverflow 上关于『C++11为什么没有 make_unique』的讨论


http://www.ppmy.cn/news/24215.html

相关文章

[ 系统安全篇 ] window 命令禁用用户及解禁方法

&#x1f36c; 博主介绍 &#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;我是 _PowerShell &#xff0c;很高兴认识大家~ ✨主攻领域&#xff1a;【渗透领域】【数据通信】 【通讯安全】 【web安全】【面试分析】 &#x1f389;点赞➕评论➕收藏 养成习…

【C语言】操作符详解

每天一篇博客&#xff0c;卷死各位。 文章目录前言1. 算术操作符2. 移位进制位的表示移位操作符1. 》--左移操作符2. 《--右移操作符3.位操作符4.赋值操作符5.单目操作符6.关系操作符7. 逻辑操作符8.条件操作符9.逗号操作符总结前言 在c语言学习中操作符尤为重要&#xff0c;而…

jetson nano(ubuntu)安装ninja

文章目录安装环境安装环境 jetson nano 系统&#xff1a;4.6.1 安装re2c apt-get install re2c检查re2c是否安装成功 re2c --version ![在这里插入图片描述](https://img-blog.csdnimg.cn/847c19f15c2646bda44f6ae73b78509a.png#pic_center)下载ninja源代码 git clone https:/…

微信小程序 学生选课系统--nodejs+vue

系统分为学生和管理员&#xff0c;教师三个角色 学生小程序端的主要功能有&#xff1a; 1.用户注册和登陆系统 2.查看选课介绍信息 3.查看查看课程分类 4.查看课程详情&#xff0c;在线选课&#xff0c;提交选课信息 5.在线搜索课程信息 6.用户个人中心修改个人资料 7.用户查看…

【C++之容器篇】造轮子:模拟实现vector类

目录前言一、项目结构1. vector的简介2. 项目结构二、vector的底层结构三、默认成员函数1. 构造函数(1)无参构造函数2. 拷贝构造函数3. 析构函数4. 赋值运算符重载函数四、迭代器1. 普通对象的正向迭代器2. const 对象的正向迭代器五、容量接口1. size()2. capacity()3. reserv…

C++入门教程||C++ 数据类型||C++ 变量类型

C 数据类型 使用编程语言进行编程时&#xff0c;需要用到各种变量来存储各种信息。变量保留的是它所存储的值的内存位置。这意味着&#xff0c;当您创建一个变量时&#xff0c;就会在内存中保留一些空间。 您可能需要存储各种数据类型&#xff08;比如字符型、宽字符型、整型…

ccc-Logistic Regression-李宏毅(5)

文章目录Step 1: Function SetStep 2: Goodness of a FunctionStep 3: Find the best functionWhy not Logistic Regression Square ErrorDiscriminative v.s. GenerativeMulti-class Classification(3 Class)Limitation of Logistic RegressionCascading logistic regression…

【openGauss实战8】Schema的图文解读

&#x1f4e2;&#x1f4e2;&#x1f4e2;&#x1f4e3;&#x1f4e3;&#x1f4e3; 哈喽&#xff01;大家好&#xff0c;我是【IT邦德】&#xff0c;江湖人称jeames007&#xff0c;10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】&#xff01;&#x1f61c;&am…