【大数据Hadoop】Hadoop 3.x 新特性总览

news/2024/11/27 4:49:22/

Hadoop 3.x 新特性剖析系列1

    • 1. 概述
    • 2. 内容
      • 2.1 JDK
      • 2.2 EC技术
      • 2.3 YARN的时间线V.2服务
        • 2.3.1 伸缩性
        • 2.3.2 可用性
        • 2.3.3 架构体系
      • 2.4 优化Hadoop Shell脚本
      • 2.5 重构Hadoop Client Jar包
      • 2.6 支持等待容器和分布式调度
      • 2.7 支持多个NameNode节点
      • 2.8 默认的服务端口被修改
      • 2.9 支持文件系统连接器
      • 2.10 DataNode内部负载均衡

1. 概述

从功能上来说,Hadoop3比Hadoop2有些功能得到了增强,具体增加了哪些,后面再讲。首先,我们来看看Hadoop3主要带来了哪些变化:

  • JDK:在Hadoop2时,可以使用JDK7,但是在Hadoop3中,最低版本要求是JDK8,所以低于JDK8的版本需要对JDK进行升级,方可安装使用Hadoop3
  • EC技术:Erasure Encoding 简称EC,是Hadoop3给HDFS拓展的一种新特性,用来解决存储空间文件。EC技术既可以防止数据丢失,又能解决HDFS存储空间翻倍的问题
  • YARN:提供YARN的时间轴服务V.2,以便用户和开发人员可以对其进行测试,并提供反馈意见,使其成为YARN Timeline Service v.1的替代品。
  • 优化Hadoop Shell脚本
  • 重构Hadoop Client Jar包
  • 支持随机Container
  • 支持多个NameNode
  • 部分默认服务端口被改变
  • 支持文件系统连接器
  • DataNode内部添加了负载均衡

2. 内容

2.1 JDK

在Hadoop 3中,所有的Hadoop JAR包编译的环境都是基于Java8来完成的,所有如果仍然使用的是Java 7或者更低的版本,你可能需要升级到Java 8才能正常的运行Hadoop3。如下图所示:
在这里插入图片描述

2.2 EC技术

首先,我们先来了解一下什么是Erasure Encoding。如下图所示:

在这里插入图片描述

一般来说,在存储系统中,EC技术主要用于廉价磁盘冗余阵列,即RAID。如上图,RAID通过Stripping实现EC技术,其中逻辑顺序数据(比如:文件)被划分成更小的单元(比如:位、字节或者是块),并将连续单元存储在不同的磁盘上。

然后,对原始数据单元的每个Stripe,计算并存储一定数量的奇偶校验单位。这个过程称之为编码,通过基于有效数据单元和奇偶校验单元的解码计算,可以恢复任意Stripe单元的错误。当我们想到了擦除编码的时候,我们可以先来了解一下在Hadoop2中复制的早期场景。如下图所示:
在这里插入图片描述

HDFS默认情况下,它的备份系数是3,一个原始数据块和其他2个副本。其中2个副本所需要的存储开销各站100%,这样使得200%的存储开销,会消耗其他资源,比如网络带宽。然而,在正常操作中很少访问具有低IO活动的冷数据集的副本,但是仍然消耗与原始数据集相同的资源量。

对于EC技术,即擦除编码存储数据和提供容错空间较小的开销相比,HDFS复制,EC技术可以代替复制,这将提供相同的容错机制,同时还减少了存储开销。如下图所示:

在这里插入图片描述
  EC和HDFS的整合可以保持与提供存储效率相同的容错。例如,一个副本系数为3,要复制文件的6个块,需要消耗6*3=18个块的磁盘空间。但是,使用EC技术(6个数据块,3个奇偶校验块)来部署,它只需要消耗磁盘空间的9个块(6个数据块+3个奇偶校验块)。这些与原先的存储空间相比较,节省了50%的存储开销。

由于擦除编码需要在执行远程读取时,对数据重建带来额外的开销,因此他通常用于存储不太频繁访问的数据。在部署EC之前,用户应该考虑EC的所有开销,比如存储、网络、CPU等。

2.3 YARN的时间线V.2服务

Hadoop引入YARN Timeline Service v.2是为了解决两个主要问题:

  • 提高时间线服务的可伸缩性和可靠性;
  • 通过引入流和聚合来增强可用性

下面首先,我们来剖析一下它伸缩性。

2.3.1 伸缩性

YARN V1仅限于读写单个实例,不能很好的扩展到小集群之外。YARN V2使用了更具有伸缩性的分布式体系架构和可扩展的后端存储,它将数据的写入与数据的读取进行了分离。并使用分布式收集器,本质上是每个YARN应用的收集器。读则是独立的实例,专门通过REST API服务来查询

2.3.2 可用性

对于可用性的改进,在很多情况下,用户对流或者YARN应用的逻辑组的信息比较感兴趣。启动一组或者一系列的YARN应用程序来完成逻辑应用是很常见的。如下图所示:
在这里插入图片描述

2.3.3 架构体系

YARN时间线服务V2采用了一组收集器写数据到后端进行存储。收集器被分配并与它们专用的应用程序主机进行协作,如下图所示,属于该应用程序的所有数据都被发送到应用程序时间轴的收集器中,但是资源管理器时间轴收集器除外。
在这里插入图片描述
对于给定的应用程序,应用程序可以将数据写入同一时间轴收集器中。此外,为应用程序运行容器的其他节点的节点管理器,还会向运行应用程序主节点的时间轴收集器写入数据。资源管理器还维护自己的时间手机线收集器,它只发布YARN的通用生命周期事件,以保持其写入量合理。时间的读取器是单独的守护进程从收集器中分离出来的,它旨在服务于REST API查询操作。

2.4 优化Hadoop Shell脚本

Hadoop Shell脚本已经被重写,用来修复已知的BUG,解决兼容性问题和一些现有安装的更改。它还包含了一些新的特性,内容如下所示:

所有Hadoop Shell脚本子系统现在都会执行hadoop-env.sh这个脚本,它允许所有环节变量位于一个位置;
守护进程已通过*-daemon.sh选项从*-daemon.sh移动到了bin命令中,在Hadoop3中,我们可以简单的使用守护进程来启动、停止对应的Hadoop系统进程;
触发SSH连接操作现在可以在安装时使用PDSH;
${HADOOP_CONF_DIR}现在可以任意配置到任何地方;
脚本现在测试并报告守护进程启动时日志和进程ID的各种状态;

2.5 重构Hadoop Client Jar包

Hadoop2 中可用的Hadoop客户端将Hadoop的传递依赖性拉到Hadoop应用程序的类路径上。如果这些传递依赖项的版本与应用程序使用的版本发送冲突,这可能会产生问题。

因此,在Hadoop3中有新的Hadoop客户端API和Hadoop客户端运行时工件,它们将Hadoop的依赖性遮蔽到单个JAR中,Hadoop客户端API是编译范围,Hadoop客户端运行时是运行时范围,它包含从Hadoop客户端重新定位的第三方依赖关系。因此,你可以将依赖项绑定到JAR中,并测试整个JAR以解决版本冲突。这样避免了将Hadoop的依赖性泄露到应用程序的类路径上。例如,HBase可以用来与Hadoop集群进行数据交互,而不需要看到任何实现依赖。

2.6 支持等待容器和分布式调度

在Hadoop3 中引入了一种新型执行类型,即等待容器,即使在调度时集群没有可用的资源,它也可以在NodeManager中被调度执行。在这种情况下,这些容器将在NM中排队等待资源启动,等待荣容器比默认容器优先级低,因此,如果需要,可以抢占默认容器的空间,这样可以提供机器的利用率。如下图所示:

在这里插入图片描述

默认容器对于现有的YARN容器,它们由容量调度分配,一旦被调度到节点,就保证有可用的资源使它们执行立即开始。此外,只要没有故障发生,这些容器就可以允许完毕。

等待容器默认由中心RM分配,但还增加了支持以允许等待容器被分布式调度,该调度群被实现于AM和RM协议的拦截器。

2.7 支持多个NameNode节点

在Hadoop2中,HDFS NameNode高可用体系结构有一个Active和Standby NameNode,通过JournalNodes,该体系结构能够容忍任何一个NameNode失败。

然而,业务关键部署需要更高程度的容错性。因此,在Hadoop3中允许用户运行多个备用的NameNode。例如,通过配置三个NameNode(1个Active NameNode和2个Standby NameNode)和5个JournalNodes节点,集群可以容忍2个NameNode节点故障。如下图所示:
在这里插入图片描述

2.8 默认的服务端口被修改

早些时候,多个Hadoop服务的默认端口位于Linux端口范围以内。除非客户端程序明确的请求特定的端口号,否则使用的端口号是临时的,因此,在启动时,服务有时会因为与其他另一个应用程序冲突而无法绑定到端口。

因此,具有临时范围冲突端口已经被移除该范围,影响多个服务的端口号,即NameNode、Secondary NameNode、DataNode等如下所示:
在这里插入图片描述

2.9 支持文件系统连接器

Hadoop现在支持与微软 Azure数据和阿里云对象存储系统的集成。它可以作为一种替代Hadoop兼容的文件系统,首先添加微软Azure数据,然后添加阿里云对象存储系统。

2.10 DataNode内部负载均衡

单个数据节点配置多个数据磁盘,在正常写入操作期间,数据被均匀的划分,因此,磁盘被均匀填充。但是,在维护磁盘时,添加或者替换磁盘会导致DataNode节点存储出现偏移,这种情况在早期的HDFS文件系统中,是没有被处理的。如图下图所示,维护前和维护后不均衡的情况:

在这里插入图片描述

现在Hadoop3通过新的内部DataNode平衡功能来处理这种情况,这是通过hdfs diskbalancer CLI来进行调用的。执行之后,DataNode会进行均衡处理,如下图所示:
在这里插入图片描述


http://www.ppmy.cn/news/24002.html

相关文章

实战打靶集锦-004-My-Cmsms

**写在前面:**记录一次艰难曲折的打靶经历。 目录1. 主机发现2. 端口扫描3. 服务枚举4. 服务探查4.1 WEB服务探查4.1.1 浏览器访问4.1.2 目录枚举4.1.3 控制台探查4.1.4 其他目录探查4.2 阶段小结5. 公共EXP搜索5.1 CMS搜索5.2 Apache搜索5.3 PHP搜索5.4 MySQL搜索5…

福利篇1——嵌入式软件行业与公司汇总

前言 汇总嵌入式软件行业与公司,供参考。 文章目录 前言一、嵌入式软件行业和公司汇总1、芯片行业代表性公司2、人工智能代表性公司1)智能驾驶方向代表性公司2)机器人方向代表性公司3、消费电子领域代表性公司4、传统电子电器领域代表性公司5、国企和军工领域代表性公司6、网…

js中的自调用表达式

自调用表达式 由函数表达式创建的函数可以自调用,称之为自调用表达式。 语法 由函数表达式创建函数: const myFn function () {let a 100console.log(a);return a } myFn() //调用后执行,输出100表达式后面紧跟 ( ) 则会自动调用: const myFn fu…

获取成员userID

文章目录一、简介二、获取token1、获取秘钥2、获取Token三、获取部门数据1、获取部门列表2、获取子部门ID列表3、获取单个部门详情四、获取成员信息1、读取成员2、获取部门成员3、获取部门成员详情一、简介 同步数据到企微: 企业如果需要从自有的系统同步通讯录到…

【机器学习】聚类算法(理论)

聚类算法(理论) 目录一、概论1、聚类算法的分类2、欧氏空间的引入二、K-Means算法1、算法思路2、算法总结三、DBSCAN算法1、相关概念2、算法思路3、算法总结四、实战部分一、概论 聚类分析,即聚类(Clustering)&#xf…

悲观锁、乐观锁以及分布式锁

1.单机应用乐观锁悲观锁,select 时怎么加排它锁?1.1悲观锁(Pessimistic Lock):悲观锁特点:先获取锁,再进行业务操作。即“悲观”的认为获取锁是非常有可能失败的,因此要先确保获取锁成功再进行业务操作。通常所说的“…

以后更新功能,再也不用App发版了!智能小程序将为开发者最大化减负

在 IoT 时代,越来越多的企业意识到打造自有 App 对于品牌的重要性。作为智能设备不可或缺的控制终端,App 具备连接用户、完善服务、精细化运营用户的独特优势,可帮助企业大大提升品牌竞争力。 为了帮助品牌企业打造更具个性化、差异化的智能…

ROS运行机C++程序,移动

流程: 1.创建工作空间 mkdir catkin_ws cd catkin_ws mkdir src cd src catkin_init_workspace 2编译工作空间 cd ~/catkin_ws/ catkin_make catkin_make install 首先对ROS进行创建一个元功能包 3.设置环境变量 source devel/setup.bash source devel/setup.b…