1题目
给定一个不含重复数字的数组 nums
,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。
示例 1:
输入:nums = [1,2,3] 输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
示例 2:
输入:nums = [0,1] 输出:[[0,1],[1,0]]
示例 3:
输入:nums = [1] 输出:[[1]]
提示:
1 <= nums.length <= 6
-10 <= nums[i] <= 10
nums
中的所有整数 互不相同
2链接
题目链接:46. 全排列 - 力扣(LeetCode)
视频链接:组合与排列的区别,回溯算法求解的时候,有何不同?| LeetCode:46.全排列_哔哩哔哩_bilibili
3解题思路
注意了注意了!这个题目是排列,已经不是组合了!
组合的题目因为无序不能向前取,所以需要startIndex来控制向后取值。本题排列无需
以[1,2,3]为例,抽象成树形结构如下:
回溯三部曲;
1、确定函数参数及返回值
首先排列是有序的,也就是说 [1,2] 和 [2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方。
可以看出元素1在[1,2]中已经使用过了,但是在[2,1]中还要在使用一次1,所以处理排列问题就不用使用startIndex了。
但排列问题需要一个used数组,标记已经选择的元素,如上图橘黄色部分所示。要不然我怎么知道还能取哪些数,万一再取到自己本身不就尬住了嘛。
vector<vector<int>> result;
vector<int> path;
void backtracking (vector<int>& nums, vector<bool>& used)
2、确定递归终止条件
可以看出叶子节点,就是收割结果的地方。
那么什么时候,算是到达叶子节点呢?
当收集元素的数组path的大小达到和nums数组一样大的时候,说明找到了一个全排列,也表示到达了叶子节点。
// 此时说明找到了一组
if (path.size() == nums.size()) {result.push_back(path);return;
}
3、确定单层递归逻辑
used数组,其实就是记录此时path里都有哪些元素使用了,一个排列里一个元素只能使用一次。
for (int i = 0; i < nums.size(); i++) {if (used[i] == true) continue; // path里已经收录的元素,直接跳过used[i] = true;path.push_back(nums[i]);backtracking(nums, used);path.pop_back();used[i] = false;
}
这整体过程和思路真的和我前面几篇写的高度相似,很容易就能想到。现在对于这种题我甚至都可以手撕代码了....
4代码
class Solution {
public:vector<vector<int>> result;vector<int> path;void backtracking (vector<int>& nums, vector<bool>& used) {// 此时说明找到了一组if (path.size() == nums.size()) {result.push_back(path);return;}for (int i = 0; i < nums.size(); i++) {if (used[i] == true) continue; // path里已经收录的元素,直接跳过used[i] = true;path.push_back(nums[i]);backtracking(nums, used);path.pop_back();used[i] = false;}}vector<vector<int>> permute(vector<int>& nums) {result.clear();path.clear();vector<bool> used(nums.size(), false);backtracking(nums, used);return result;}
};