初等数学范围内,椭圆周长及弧长均没有精确的公式
1,椭圆弧弧长,用定积分计算
2,椭圆周长定积分或各种近似公示来计算。
椭圆周长近似公式列举:
一、 L1 =π·qn/ atan(n)
(b→a,q=a+b,n=((a-b)/a))^2
这是根据圆周长和割圆术原理推导的,精度一般。
二、 L2 =π·θ/(π/4)·(a-c+c/sinθ)
(b→0,c=√(a^2-b^2),θ=acos((a-b)/a)^1.1)
这是根据两对扇形组成椭圆得特点推导的,精度一般。
三、 L3 =π·q(1 +mn)
(q=a+b,m=4/π-1,n=((a-b)/a)^3.3)
这是根据圆周长公式推导的,精度一般。
四、 L4 =π·√(2a^2 + 2b^2)·(1 +mn)
(m=2√(2/π)-1,n=((a-b)/a)^2.05)
这是根据椭圆a=b时得基本特点推导的,精度一般。
五、 L5 = √(4ab·π^2 + 15(a-b)^2)·(1 +mn)
(m=4/√(15)-1 ,n=((a-b)/a)^9 )
这是根据椭圆a=b,c=0时是特点推导的,精度较好。
六、L6= π√[2(a^2+b^2)] (较近似)
七 、L7=π[3/2(a+b)-√(ab)] (较精确)
八、L8 =π·q(1 + 3h/(10 + √(4-3h)))·(1 +mn)
(q=a+b,h=((a-b)/(a+b))^2,m=22/7π-1,n=((a-b)/a)^33.697)