学习TensorFlow,TensorBoard可视化网络结构和参数

news/2024/11/24 20:08:43/

在学习深度网络框架的过程中,我们发现一个问题,就是如何输出各层网络参数,用于更好地理解,调试和优化网络?针对这个问题,TensorFlow开发了一个特别有用的可视化工具包:TensorBoard,既可以显示网络结构,又可以显示训练和测试过程中各层参数的变化情况。本博文分为四个部分,第一部分介绍相关函数,第二部分是代码测试,第三部分是运行结果,第四部分介绍相关参考资料。


一. 相关函数

TensorBoard的输入是tensorflow保存summary data的日志文件。日志文件名的形式如:events.out.tfevents.1467809796.lei-All-Series 或 events.out.tfevents.1467809800.lei-All-Series。TensorBoard可读的summary data有scalar,images,audio,histogram和graph。那么怎么把这些summary data保存在日志文件中呢?


数值如学习率,损失函数用scalar_summary函数。tf.scalar_summary(节点名称,获取的数据)

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.scalar_summary('accuracy', accuracy)

各层网络权重,偏置的分布,用histogram_summary函数

preactivate = tf.matmul(input_tensor, weights) + biases
tf.histogram_summary(layer_name + '/pre_activations', preactivate)

其他几种summary data也是同样的方式获取,只是对应的获取函数名称换一下。这些获取summary data函数节点和graph是独立的,调用的时候也需要运行session。当需要获取的数据较多的时候,我们一个一个去保存获取到的数据,以及一个一个去运行会显得比较麻烦。tensorflow提供了一个简单的方法,就是合并所有的summary data的获取函数,保存和运行只对一个对象进行操作。比如,写入默认路径中,比如/tmp/mnist_logs (by default)

merged = tf.merge_all_summaries()
train_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/train', sess.graph)
test_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/test')

SummaryWriter从tensorflow获取summary data,然后保存到指定路径的日志文件中。以上是在建立graph的过程中,接下来执行,每隔一定step,写入网络参数到默认路径中,形成最开始的文件:events.out.tfevents.1467809796.lei-All-Series 或 events.out.tfevents.1467809800.lei-All-Series。

for i in range(FLAGS.max_steps):
if i % 10 == 0:  # Record summaries and test-set accuracy
summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))test_writer.add_summary(summary, i)print('Accuracy at step %s: %s' % (i, acc))else: # Record train set summarieis, and trainsummary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))train_writer.add_summary(summary, i)

二. 代码测试

# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================="""A simple MNIST classifier which displays summaries in TensorBoard.This is an unimpressive MNIST model, but it is a good example of using
tf.name_scope to make a graph legible in the TensorBoard graph explorer, and of
naming summary tags so that they are grouped meaningfully in TensorBoard.It demonstrates the functionality of every TensorBoard dashboard.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_functionimport tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_dataflags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_boolean('fake_data', False, 'If true, uses fake data ''for unit testing.')
flags.DEFINE_integer('max_steps', 1000, 'Number of steps to run trainer.')
flags.DEFINE_float('learning_rate', 0.001, 'Initial learning rate.')
flags.DEFINE_float('dropout', 0.9, 'Keep probability for training dropout.')
flags.DEFINE_string('data_dir', '/tmp/data', 'Directory for storing data')
flags.DEFINE_string('summaries_dir', '/tmp/mnist_logs', 'Summaries directory')def train():# Import datamnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True,fake_data=FLAGS.fake_data)sess = tf.InteractiveSession()# Create a multilayer model.# Input placehoolderswith tf.name_scope('input'):x = tf.placeholder(tf.float32, [None, 784], name='x-input')image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])tf.image_summary('input', image_shaped_input, 10)y_ = tf.placeholder(tf.float32, [None, 10], name='y-input')keep_prob = tf.placeholder(tf.float32)tf.scalar_summary('dropout_keep_probability', keep_prob)# We can't initialize these variables to 0 - the network will get stuck.def weight_variable(shape):"""Create a weight variable with appropriate initialization."""initial = tf.truncated_normal(shape, stddev=0.1)return tf.Variable(initial)def bias_variable(shape):"""Create a bias variable with appropriate initialization."""initial = tf.constant(0.1, shape=shape)return tf.Variable(initial)def variable_summaries(var, name):"""Attach a lot of summaries to a Tensor."""with tf.name_scope('summaries'):mean = tf.reduce_mean(var)tf.scalar_summary('mean/' + name, mean)with tf.name_scope('stddev'):stddev = tf.sqrt(tf.reduce_sum(tf.square(var - mean)))tf.scalar_summary('sttdev/' + name, stddev)tf.scalar_summary('max/' + name, tf.reduce_max(var))tf.scalar_summary('min/' + name, tf.reduce_min(var))tf.histogram_summary(name, var)def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):"""Reusable code for making a simple neural net layer.It does a matrix multiply, bias add, and then uses relu to nonlinearize.It also sets up name scoping so that the resultant graph is easy to read, andadds a number of summary ops."""# Adding a name scope ensures logical grouping of the layers in the graph.with tf.name_scope(layer_name):# This Variable will hold the state of the weights for the layerwith tf.name_scope('weights'):weights = weight_variable([input_dim, output_dim])variable_summaries(weights, layer_name + '/weights')with tf.name_scope('biases'):biases = bias_variable([output_dim])variable_summaries(biases, layer_name + '/biases')with tf.name_scope('Wx_plus_b'):preactivate = tf.matmul(input_tensor, weights) + biasestf.histogram_summary(layer_name + '/pre_activations', preactivate)activations = act(preactivate, 'activation')tf.histogram_summary(layer_name + '/activations', activations)return activationshidden1 = nn_layer(x, 784, 500, 'layer1')dropped = tf.nn.dropout(hidden1, keep_prob)y = nn_layer(dropped, 500, 10, 'layer2', act=tf.nn.softmax)with tf.name_scope('cross_entropy'):diff = y_ * tf.log(y)with tf.name_scope('total'):cross_entropy = -tf.reduce_mean(diff)tf.scalar_summary('cross entropy', cross_entropy)with tf.name_scope('train'):train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(cross_entropy)with tf.name_scope('accuracy'):with tf.name_scope('correct_prediction'):correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))with tf.name_scope('accuracy'):accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))tf.scalar_summary('accuracy', accuracy)# Merge all the summaries and write them out to /tmp/mnist_logs (by default)merged = tf.merge_all_summaries()train_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/train', sess.graph)test_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/test')tf.initialize_all_variables().run()# Train the model, and also write summaries.# Every 10th step, measure test-set accuracy, and write test summaries# All other steps, run train_step on training data, & add training summariesdef feed_dict(train):"""Make a TensorFlow feed_dict: maps data onto Tensor placeholders."""if train or FLAGS.fake_data:xs, ys = mnist.train.next_batch(100, fake_data=FLAGS.fake_data)k = FLAGS.dropoutelse:xs, ys = mnist.test.images, mnist.test.labelsk = 1.0return {x: xs, y_: ys, keep_prob: k}for i in range(FLAGS.max_steps):if i % 10 == 0:  # Record summaries and test-set accuracysummary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))test_writer.add_summary(summary, i)print('Accuracy at step %s: %s' % (i, acc))else: # Record train set summarieis, and trainsummary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))train_writer.add_summary(summary, i)def main(_):if tf.gfile.Exists(FLAGS.summaries_dir):tf.gfile.DeleteRecursively(FLAGS.summaries_dir)tf.gfile.MakeDirs(FLAGS.summaries_dir)train()if __name__ == '__main__':tf.app.run()


三. 运行结果

代码运行


生成文件



调用TensorBoard可视化运行结果

tensorboard --logdir=/tmp/mnist_logs/train/


打开链接 http://0.0.0.0:6006



EVENTS是训练参数统计显示,可以看到整个训练过程中,各个参数的变换情况



IMAGES输入和输出标签,省略


GRAPH网络结构显示


双击进去,可以显示更多的细节,包括右边的列表显示


HISTOGRAM训练过程参数分布情况显示



四. 参考资料

如果你想了解更多信息,可以参考一下资料:

https://www.tensorflow.org/versions/r0.9/how_tos/summaries_and_tensorboard/index.html

https://github.com/tensorflow/tensorflow/blob/r0.9/tensorflow/tensorboard/README.md

https://github.com/tensorflow/tensorflow/blob/r0.9/tensorflow/examples/tutorials/mnist/mnist_with_summaries.py

https://www.tensorflow.org/versions/r0.9/how_tos/graph_viz/index.html


http://www.ppmy.cn/news/231425.html

相关文章

TensorFlow系列:TensorBoard可视化网络结构和参数

转自:https://blog.csdn.net/helei001/article/details/51842531 在学习深度网络框架的过程中,我们发现一个问题,就是如何输出各层网络参数,用于更好地理解,调试和优化网络?针对这个问题,Tensor…

深度学习基础:卷积与转置卷积、计算量与参数量、argparse库、信息熵(KL散度及交叉熵)、hook机制、top_k和AvgrageMeter函数(持续更新)

深度学习模型基础知识汇总(持续更新) 文章目录 一、卷积和转置卷积1、基本概念2、输出尺寸的计算公式3、nn.Conv2d、nn.ConvTranspose2d的参数k,s,p在图形上的含义,卷积运算过程 二、模型计算量(FLOPs)和参数量(Params)三、python的argparse…

HyperOpt参数优化

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 本文链接: https://blog.csdn.net/u012735708/article/details/84820101 当我们创建好模型后,还要调整各个模型的参数&a…

机器学习之K近邻法(KNN)

目录 一、基本概念: 二、距离的计算方式: 三、k的选取: 四、特征归一化: 五、交叉验证: 一、基本概念: k近邻算法是一种基本分类和回归方法。这里只讨论分类问题的k近邻法。 k近邻算法,即是给定一个…

python位置参数错误_python – 函数缺少2个必需的位置参数:’x’和’y’

我正在尝试编写一个绘制Spirograph的Python龟程序,我不断收到此错误: Traceback (most recent call last): File "C:\Users\matt\Downloads\spirograph.py", line 36, in main() File "C:\Users\matt\Downloads\spirograph.py", line 16, in main spirog…

Hyperopt 参数优化

翻译自https://districtdatalabs.silvrback.com/parameter-tuning-with-hyperopt Parameter Tuning with Hyperopt –Kris Wright 概述 Hyperopt可以帮助快速进行机器学习模型参数调试。通常情况下有两种类型的参数调试方法,网格搜索(grid search&…

python颜色参数_Python中matplotlib的颜色及线条参数控制示例

用Python画图的时候选色选点都可以直接参考这里的内容,matplotlib中有哪些命名颜色可供用于绘图? 在matplotlib文档中找到一个列表,声明这些是唯一的名称: b: blue g: green r: red c: cyan m: magenta y: yellow k: black w: white 然而,我发现这些颜色也可以使…

python代码设置超参数_超参数调优总结,贝叶斯优化Python代码示例

本文介绍超参数(hyperparameter)的调优方法。 神经网络模型的参数可以分为两类,模型参数,在训练中通过梯度下降算法更新; 超参数,在训练中一般是固定数值或者以预设规则变化,比如批大小(batch size)、学习率(learning rate)、正则化项系数(weight decay)、核函数中的gamma…