SLAM导航机器人零基础实战系列:(三)感知与大脑——5.机器人大脑嵌入式主板性能对比...

news/2024/11/8 22:52:53/

SLAM导航机器人零基础实战系列:(三)感知与大脑——5.机器人大脑嵌入式主板性能对比

摘要                                              

在我的想象中机器人首先应该能自由的走来走去,然后应该能流利的与主人对话。朝着这个理想,我准备设计一个能自由行走,并且可以与人语音对话的机器人。实现的关键是让机器人能通过传感器感知周围环境,并通过机器人大脑处理并输出反馈和执行动作。本章节涉及到的传感器有激光雷达、IMU、轮式里程计、麦克风、音响、摄像头,和用于处理信息的嵌入式主板。关于传感器的ROS驱动程序开发和在机器人上的使用在后面的章节会展开,本章节重点对机器人传感器和嵌入式主板进行讲解,主要内容:

1.ydlidar-x4激光雷达

2.带自校准九轴数据融合IMU惯性传感器

3.轮式里程计与运动控制

4.音响麦克风与摄像头

5.机器人大脑嵌入式主板性能对比

6.做一个能走路和对话的机器人


温馨提示:

本篇文章已经收录在我最新出版的书籍《机器人SLAM导航核心技术与实战》,感兴趣的读者可以购买纸质书籍来进行更加深入和系统性的学习,购买链接如下:

点这里购买:《机器人SLAM导航核心技术与实战》购买链接


5.机器人大脑嵌入式主板性能对比

从事SLAM与机器人导航也有几年时间了,期间用过不少的嵌入式主板做开发。机器人是软硬件结合的一个实体,这里就对机器人的大脑(嵌入式主板)进行一些讨论。结合我用过的一些嵌入式开发板,展开对比分析,具体型号如图32。

(图32)我用过的嵌入式板型号

5.1.树莓派3                                                               

树莓派一直很火,现在已经推出第三代了。这里放一张树莓派0、树莓派2、树莓派3的全家福吧,如图33。

(图33)树莓派全家福

接下来看看具体的性能参数,如图34。如果想了解更多关于树莓派的资料,可以阅读树莓派的wiki教程https://en.wikipedia.org/wiki/Raspberry_Pi。

(图34)树莓派性能参数

树莓派3,售价200RMB左右,CPU是1.2Ghz ARM-Cortex-A53,内存1GB,板载wifi模块,还有一个多媒体显示GPU(不过感觉没什么用)。CPU和内存配置算的的上是同等价位嵌入式主板的战斗机了,板载wifi这个也很实用。虽然树莓派支持安装很多种linux系统,由于我这里要跑ROS机器人系统,所以我选择了安装ubuntu-mate-16.04, ubuntu-mate-16.04 LTS实际上是ubuntu-16.04 LTS的一部分,为桌面、Raspberry Pi 2和3单片机准备的,这也是Ubuntu MATE的首个LTS长期支持版,亮点在于包含MATE 1.12.1桌面环境,针对平板支持多点触控和“自然滚动”,对多屏幕设置提供更好的支持,更好的会话管理,扩展的systemd支持,改进过的Power小程序——可显示产品型号和提供商信息等内容。

(图35)ubuntu-mate-16.04系统界面

安装好ubuntu-mate-16.04操作系统后,上电可以看到图35所示的系统界面,就可以安装kinetic版本的ROS了,然后就可以验证SLAM算法了。Gmapping激光SLAM建图和ros-navigation自动导航跑的都很顺畅;google-cartographer进行建图和重定位也没什么问题;跑ORB-SLAM2的Mono模式就不太行了,帧率5帧以内。

5.2.Firefly-RK3399                                       

萤火虫开发板还是很强大的板子分RK3288和RK3399两个版本,先看一下官方的宣传广告。

(图36)Firefly-RK3399

如图36所示,RK3399双核CortexA72+四核CortexA53的CPU和2GB/4GB可选配的内存,一看这些配置就知道很强大,的确跑各种视觉算法很不错,不过1000RMB的售价感觉有点小贵。

5.3.Nvidia-jetson-TK1                                 

(图37)Nvidia-jetson-TK1

Tegra K1是Nvidia推出的一款AI级别的嵌入式主板,ARM-Cortex-A15的CPU,192个CUDA核心的kepler架构的GPU,2GB内存,如图37。有人用Tegra K1做了一个计算集群,感觉还挺有意思的,如图38。

(图38)Nvidia-jetson-TK1计算集群

5.4.Nvidia-jetson-TX2                                 

Jetson TX2的是可以作为核武器的处理器的(@~@),性能是十分强大的。简单的智能小车或者机器人不推荐使用TX2,性价比比较低。利用TX2做处理器,控制移动平台(高精度的小车底盘)做SLAM我觉得是一个相当有意思的项目,TX2的处理能力非常适合实现机器视觉。

(图39)Nvidia-jetson-TX2

图39中左边是官方的开发板和扩展板,不过由于官方扩展板体积太大了用在很多地方不方便,于是网上推出了一款小巧的扩展板Connect Tech Inc很不错。

(图40)Nvidia-jetson-TX1/2性能参数

这个是性能表,看上去也是叼叼的,不过售价不便宜接近5000RMB。。。

5.5.Intel-NUC                                              

前面介绍的都是ARM架构的主板,现在介绍一款X86架构的主板NUC。

(图41)Intel-NUC

之前用过Intel-NUC7-i7,19V供电65W功耗感觉不适合嵌入式级别的应用场合,而且3000RMB的售价也没法和Nvidia-jetson-TX2比较性价比,所以不推荐在机器人上使用。

5.6.Intel-Edison                                          

其实这是intel一个失败的尝试,主打物联网应用,CPU采用intel的Atom处理器,最大的亮点是可以在主板上直接扩展Ardunio单片机开发板。如图42。

(图42)Intel-Edison

其实个人不推荐用Edison来开发SLAM算法,不过也有公司做这方面的尝试,比如上海思岚科技的SLAMWARE-CORE就是Edison的模仿者。

(图43)SLAMWARE-CORE

5.7.Google-Tango-phone                          

其实Tango-phone是一个完整的AR方案,手机内集成了深度相机和VO视觉里程计。

(图44)Tango-phone

看网上的演示视频也是十分的炫酷,不过最终这个项目还是没有在google中火起来,可能还是存在不少问题的吧。

5.8.总结                    

(图45)性能对比

最后,总结一些各个开发板的性能对比,见图45。玩机器人和SLAM的朋友们,如果是中低端需求推荐树莓派3,高端需求推荐jetson-TX2。

后记                

如果大家对博文的相关类容感兴趣,或有什么技术疑问,欢迎加QQ技术交流群(117698356

参考文献

[1] 张虎,机器人SLAM导航核心技术与实战[M]. 机械工业出版社,2022.

 购书链接:https://item.jd.com/13041503.html

下载更多资料:www.xiihoo.com

QQ技术讨论群: 117698356

B站视频教程:https://space.bilibili.com/66815220

Github源码:https://github.com/xiihoo/Books_Robot_SLAM_Navigation

Gitee源码(国内访问速度快):https://gitee.com/xiihoo-robot/Books_Robot_SLAM_Navigation

前言

编程基础篇

第1章 ROS入门必备知识

1.1 ROS简介 2

1.1.1 ROS的性能特色 2

1.1.2 ROS的发行版本 3

1.1.3 ROS的学习方法 3

1.2 ROS开发环境的搭建 3

1.2.1 ROS的安装 4

1.2.2 ROS文件的组织方式 4

1.2.3 ROS网络通信配置 5

1.2.4 集成开发工具 5

1.3 ROS系统架构 5

1.3.1 从计算图视角理解ROS架构 6

1.3.2 从文件系统视角理解ROS架构 7

1.3.3 从开源社区视角理解ROS架构 8

1.4 ROS调试工具 8

1.4.1 命令行工具 9

1.4.2 可视化工具 9

1.5 ROS节点通信 10

1.5.1 话题通信方式 12

1.5.2 服务通信方式 15

1.5.3 动作通信方式 19

1.6 ROS的其他重要概念 25

1.7 ROS 2.0展望 28

1.8 本章小结 28

第2章 C++编程范式

2.1 C++工程的组织结构 29

2.1.1 C++工程的一般组织结构 29

2.1.2 C++工程在机器人中的组织结构 29

2.2 C++代码的编译方法 30

2.2.1 使用g++编译代码 31

2.2.2 使用make编译代码 32

2.2.3 使用CMake编译代码 32

2.3 C++编程风格指南 33

2.4 本章小结 34

第3章 OpenCV图像处理

3.1 认识图像数据 35

3.1.1 获取图像数据 35

3.1.2 访问图像数据 36

3.2 图像滤波 37

3.2.1 线性滤波 37

3.2.2 非线性滤波 38

3.2.3 形态学滤波 39

3.3 图像变换 40

3.3.1 射影变换 40

3.3.2 霍夫变换 42

3.3.3 边缘检测 42

3.3.4 直方图均衡 43

3.4 图像特征点提取 44

3.4.1 SIFT特征点 44

3.4.2 SURF特征点 50

3.4.3 ORB特征点 52

3.5 本章小结 54

硬件基础篇

第4章 机器人传感器

4.1 惯性测量单元 56

4.1.1 工作原理 56

4.1.2 原始数据采集 60

4.1.3 参数标定 65

4.1.4 数据滤波 73

4.1.5 姿态融合 75

4.2 激光雷达 91

4.2.1 工作原理 92

4.2.2 性能参数 94

4.2.3 数据处理 96

4.3 相机 100

4.3.1 单目相机 101

4.3.2 双目相机 107

4.3.3 RGB-D相机 109

4.4 带编码器的减速电机 111

4.4.1 电机 111

4.4.2 电机驱动电路 112

4.4.3 电机控制主板 113

4.4.4 轮式里程计 117

4.5 本章小结 118

第5章 机器人主机

5.1 X86与ARM主机对比 119

5.2 ARM主机树莓派3B+ 120

5.2.1 安装Ubuntu MATE 18.04 120

5.2.2 安装ROS melodic 122

5.2.3 装机软件与系统设置 122

5.3 ARM主机RK3399 127

5.4 ARM主机Jetson-tx2 128

5.5 分布式架构主机 129

5.5.1 ROS网络通信 130

5.5.2 机器人程序的远程开发 130

5.6 本章小结 131

第6章 机器人底盘

6.1 底盘运动学模型 132

6.1.1 两轮差速模型 132

6.1.2 四轮差速模型 136

6.1.3 阿克曼模型 140

6.1.4 全向模型 144

6.1.5 其他模型 148

6.2 底盘性能指标 148

6.2.1 载重能力 148

6.2.2 动力性能 148

6.2.3 控制精度 150

6.2.4 里程计精度 150

6.3 典型机器人底盘搭建 151

6.3.1 底盘运动学模型选择 152

6.3.2 传感器选择 152

6.3.3 主机选择 153

6.4 本章小结 155

SLAM篇

第7章 SLAM中的数学基础

7.1 SLAM发展简史 158

7.1.1 数据关联、收敛和一致性 160

7.1.2 SLAM的基本理论 161

7.2 SLAM中的概率理论 163

7.2.1 状态估计问题 164

7.2.2 概率运动模型 166

7.2.3 概率观测模型 171

7.2.4 概率图模型 173

7.3 估计理论 182

7.3.1 估计量的性质 182

7.3.2 估计量的构建 183

7.3.3 各估计量对比 190

7.4 基于贝叶斯网络的状态估计 193

7.4.1 贝叶斯估计 194

7.4.2 参数化实现 196

7.4.3 非参数化实现 202

7.5 基于因子图的状态估计 206

7.5.1 非线性最小二乘估计 206

7.5.2 直接求解方法 206

7.5.3 优化方法 208

7.5.4 各优化方法对比 218

7.5.5 常用优化工具 219

7.6 典型SLAM算法 221

7.7 本章小结 221

第8章 激光SLAM系统

8.1 Gmapping算法 223

8.1.1 原理分析 223

8.1.2 源码解读 228

8.1.3 安装与运行 233

8.2 Cartographer算法 240

8.2.1 原理分析 240

8.2.2 源码解读 247

8.2.3 安装与运行 258

8.3 LOAM算法 266

8.3.1 原理分析 266

8.3.2 源码解读 267

8.3.3 安装与运行 270

8.4 本章小结 270

第9章 视觉SLAM系统

9.1 ORB-SLAM2算法 274

9.1.1 原理分析 274

9.1.2 源码解读 310

9.1.3 安装与运行 319

9.1.4 拓展 327

9.2 LSD-SLAM算法 329

9.2.1 原理分析 329

9.2.2 源码解读 334

9.2.3 安装与运行 337

9.3 SVO算法 338

9.3.1 原理分析 338

9.3.2 源码解读 341

9.4 本章小结 341

第10章 其他SLAM系统

10.1 RTABMAP算法 344

10.1.1 原理分析 344

10.1.2 源码解读 351

10.1.3 安装与运行 357

10.2 VINS算法 362

10.2.1 原理分析 364

10.2.2 源码解读 373

10.2.3 安装与运行 376

10.3 机器学习与SLAM 379

10.3.1 机器学习 379

10.3.2 CNN-SLAM算法 411

10.3.3 DeepVO算法 413

10.4 本章小结 414

自主导航篇

第11章 自主导航中的数学基础

11.1 自主导航 418

11.2 环境感知 420

11.2.1 实时定位 420

11.2.2 环境建模 421

11.2.3 语义理解 422

11.3 路径规划 422

11.3.1 常见的路径规划算法 423

11.3.2 带约束的路径规划算法 430

11.3.3 覆盖的路径规划算法 434

11.4 运动控制 435

11.4.1 基于PID的运动控制 437

11.4.2 基于MPC的运动控制 438

11.4.3 基于强化学习的运动控制 441

11.5 强化学习与自主导航 442

11.5.1 强化学习 443

11.5.2 基于强化学习的自主导航 465

11.6 本章小结 467

第12章 典型自主导航系统

12.1 ros-navigation导航系统 470

12.1.1 原理分析 470

12.1.2 源码解读 475

12.1.3 安装与运行 479

12.1.4 路径规划改进 492

12.1.5 环境探索 496

12.2 riskrrt导航系统 498

12.3 autoware导航系统 499

12.4 导航系统面临的一些挑战 500

12.5 本章小结 500

第13章 机器人SLAM导航综合实战

13.1 运行机器人上的传感器 502

13.1.1 运行底盘的ROS驱动 503

13.1.2 运行激光雷达的ROS驱动 503

13.1.3 运行IMU的ROS驱动 504

13.1.4 运行相机的ROS驱动 504

13.1.5 运行底盘的urdf模型 505

13.1.6 传感器一键启动 506

13.2 运行SLAM建图功能 506

13.2.1 运行激光SLAM建图功能 507

13.2.2 运行视觉SLAM建图功能 508

13.2.3 运行激光与视觉联合建图功能 508

13.3 运行自主导航 509

13.4 基于自主导航的应用 510

13.5 本章小结 511

附录A Linux与SLAM性能优化的探讨

附录B 习题


http://www.ppmy.cn/news/223568.html

相关文章

rgb sw 线主板接口在哪_10400F最有性价比的主板,来自H410M的背刺

大家好,我是胆小鬼隐志平,随着10代I5的10400散来到了1000元的大关,很多装机小伙伴开始从开始AMD YES转战到英特尔YES(感谢AMD让我们买到更便宜的英特尔),那么10代I5最好的座驾是什么呢? 本期给大家带来目前售价仅需要420元左右的H410M主板,完美驱动10400。。。。。 它就是…

计算机主板与硬盘用什么连接,磁盘与主板连接接口有哪几类?以SATA、SAS和USB接口为例介绍...

原标题:磁盘与主板连接接口有哪几类?以SATA、SAS和USB接口为例介绍 为了提升磁盘的传输速度,磁盘与主板的连接接口也经过多次的改良,因此也有很多不同的接口。传统磁盘接口包括有SATA、SAS、IDE与SCSI等。若考虑外接式磁盘,那还包括USB、SATA等接口。不过目前IDE已经SATA取…

基于国产飞腾、Intel X86等CPU主板设计与调试入门指导

知识就像货币,流动才有意义。 一、前言 因为我是做硬件的,想用这样一篇文章介绍一下我们常见的电脑主板,或者说电路板卡,是怎么设计出来的。仅以技术之所学,得此文章,若有表达不周之处,欢迎反馈…

TV主板科普

1,首先介绍一下TV主板的类 2,总体来说TV主板有很多种,一些接口和功能被淘汰,又有一些新的东西被应用,老旧的东西就不说了,以时下流行的安卓智能主板为例,首先看看主板的样子(图示为阿里巴巴商家展示&#…

计算机主板的选购技巧,CPU主板怎么选购 CPU主板选购技巧【详细介绍】

关于装机,处理器和主板的组合是非常重要的,装机时大家也比较容易犯的错误,下面小编给大家介绍一下三个CPU主板选购误区,看看你是否也存在这样的问题呢。 CPU主板选购误区—— CPU 只看核心数量 CPU从最初的单核心逐步发展到双核心…

M12圆形连接器公母对接带线3PIN4PIN

随着工业自动化的发展,M12圆形连接器公母对接带线3PIN4PIN作为一种重要的连接器件,被广泛应用于各种工业设备中。本文将详细介绍M12连接器的特点以及应用场景,为大家解答M12连接器的相关问题。 M12连接器主要由连接器头、插座和电缆组成&…

‘jupyter‘ 不是内部或外部命令,也不是可运行的程序或批处理文件。

目录 0.问题背景环境介绍 1.解决步骤 2.测试步骤 0.问题背景环境介绍 1)环境:windows64 2)问题背景:在搭建jupyter notebook的过程中,想用windows的任务管理器启动jupyter notebook或者使用【jupyter notebook --…

k8s概述

前言 通过linux基于cgroup,ns,及rootfs的学习,我们了解了基于容器技术原理。在大规模情况下,单单容器技术完全不够,k8s的出现就是解决 在大规模集群中存在各种各样的任务,任务之间又有着各样的关系。对于这些关系要如何处理优雅得…