冈萨雷斯DIP第4章知识点

news/2024/11/23 3:58:00/

文章目录

    • 4.1 背景
    • 4.3 取样和取样函数的傅里叶变换
    • 4.5 二变量函数的傅里叶变换
    • 4.6 二维 DFT 和 IDFT 的一些性质
      • 4.6.6 二维离散卷积定理
    • 4.7 频率域滤波基础
      • 4.7.3 频率域滤波步骤小结
      • 4.7.4 空间域和频率域滤波之间的对应关系
    • 4.8 使用低通频率域滤波器平滑图像
    • 4.9 使用高通滤波器锐化图像

4.1 背景

DFT方法的计算优势

如3.4节所述,傅里叶变换用大小为 m × n m×n m×n 的核对 M × N M×N M×N 的图像滤波时,运算次数为 M N m n MNmn MNmn (乘法和加法)。若核是可分离的,运算次数减少 M N ( m + n ) MN(m+n) MN(m+n)。在4.11节中,会发现在频率域中执行等效滤波的运算次数仅为 2 M N log ⁡ 2 M N 2MN\log_2MN 2MNlog2MN,系数 2 2 2 表示计算一次正FFT和一次反FFT。

分别考虑大小为 M × M M×M M×M m × m m×m m×m 的方形图像与核。与采用不可分离的核相比,采用 FFT 对图像滤波的计算优势(它是核大小的函数)定义为:

C n ( m ) = M 2 m 2 2 M 2 log ⁡ 2 M 2 = m 2 4 log ⁡ 2 M C_{\mathrm{n}}(m)=\frac{M^{2} m^{2}}{2 M^{2} \log _{2} M^{2}}=\frac{m^{2}}{4 \log _{2} M} Cn(m)=2M2log2M2M2m2=4log2Mm2

如果核是可分离的,那么这一优势变为:

C s ( m ) = 2 M 2 m 2 M 2 log ⁡ 2 M 2 = m 2 log ⁡ 2 M C_{\mathrm{s}}(m)=\frac{2 M^{2} m}{2 M^{2} \log _{2} M^{2}}=\frac{m}{2 \log _{2} M} Cs(m)=2M2log2M22M2m=2log2Mm



4.3 取样和取样函数的傅里叶变换

类似于一维取样,二维取样可用一个取样函数建模(即一个二维冲击串)

s Δ T Δ Z ( t , z ) = ∑ m = − ∞ ∞ ∑ n = − ∞ ∞ δ ( t − m Δ T , z − n Δ Z ) s_{\Delta T \Delta Z}(t, z)=\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \delta(t-m \Delta T, z-n \Delta Z) sΔTΔZ(t,z)=m=n=δ(tmΔT,znΔZ)

二维取样定理称,若取样间隔满足:

1 Δ T > 2 μ max ⁡ 1 Δ Z > 2 ν max ⁡ \begin{array}{l} \frac{1}{\Delta T}>2 \mu_{\max }\\ \\ \frac{1}{\Delta Z}>2 \nu_{\max } \end{array} ΔT1>2μmaxΔZ1>2νmax

则连续带限函数可由一组样本无误地复原。

在区间 [ − μ m a x , μ m a x ] [-μ_{\mathrm{max}},μ_{\mathrm{max}}] [μmax,μmax] [ − v m a x , v m a x ] [-v_{\mathrm{max}},v_{\mathrm{max}}] [vmax,vmax] 建立的频率域矩形之外, f ( t , z ) f(t,z) f(t,z) 的傅里叶变换是零, 则称该函数为 带限函数 。



4.5 二变量函数的傅里叶变换

在这里插入图片描述
F ( μ , ν ) = ∫ − ∞ ∞ ∫ − ∞ ∞ f ( t , z ) e − j 2 π ( μ t + ν z ) d t d z F(\mu, \nu)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t, z) e^{-j 2 \pi(\mu t+\nu z)} d t d z F(μ,ν)=f(t,z)ej2π(μt+νz)dtdz



4.6 二维 DFT 和 IDFT 的一些性质

假定对连续函数 f ( t , z ) f(t, z) f(t,z) 取样生成了一幅数字图像 f ( x , y ) f(x, y) f(x,y),它由分别在 t t t z z z 方向,所取的 M × N M×N M×N 个样本组成。令 Δ T ΔT ΔT Δ Z ΔZ ΔZ 表示样本间的间隔(见图4.15),那么,频率域对应的离散变量间的间隔 Δ u Δu Δu Δ v Δv Δv 分别为:
Δ u = 1 M Δ T Δ v = 1 N Δ Z \begin{aligned} \Delta u & =\frac{1}{M \Delta T} \\ \\ \Delta v & =\frac{1}{N \Delta Z} \end{aligned} ΔuΔv=MΔT1=NΔZ1

这里其实很容易理解,因为 1 Δ T \frac{1}{ \Delta T} ΔT1 就是采样率,离散傅里叶变换就是将采样率分为 M M M 份来研究。

如果 f ( x , y ) f(x, y) f(x,y) 旋转 θ 0 θ_0 θ0 角度, F ( u , v ) F(u, v) F(u,v) 也旋转相同的角度。

在一维的DFT中有这个公式:

f ( x ) e j 2 π ( u 0 x / M ) ⟷ F T F ( u − u 0 ) f(x) \mathrm{e}^{\mathrm{j} 2 \pi\left(u_{0} x / M\right)} \stackrel{\mathrm{FT}}{\longleftrightarrow} F\left(u-u_{0}\right) f(x)ej2π(u0x/M)FTF(uu0)

在二维中,我们可以利用下面的公式进行频谱中心化.

f ( x , y ) ( − 1 ) x + y ⟷ F T F ( u − M / 2 , v − N / 2 ) f(x, y)(-1)^{x+y} \stackrel{\mathrm{FT}}{\longleftrightarrow} F(u-M / 2, v-N / 2) f(x,y)(1)x+yFTF(uM/2,vN/2)

利用该式移动数据,使 F ( 0 , 0 ) F(0, 0) F(0,0) 位于由区间 [ 0 , M – 1 ] [0, M–1] [0,M–1] [ 0 , N – 1 ] [0, N–1] [0,N–1] 在频率域中定义的矩形的中心处。图4.22(b)显示了该结果。

在这里插入图片描述

4.6.6 二维离散卷积定理

f ( x , y ) ⋆ h ( x , y ) ⟷ F T F ( u , v ) H ( u , v ) f ( x , y ) h ( x , y ) ⟷ F T 1 M N F ( u , v ) ⋆ H ( u , v ) \begin{array}{c} f(x, y) \star h(x, y) \stackrel{\mathrm{FT}}{\longleftrightarrow} F(u, v) H(u, v) \\ \\ f(x, y) h(x, y) \stackrel{\mathrm{FT}}{\longleftrightarrow} \frac{1}{M N} F(u, v) \star H(u, v) \end{array} f(x,y)h(x,y)FTF(u,v)H(u,v)f(x,y)h(x,y)FTMN1F(u,v)H(u,v)

上式是线性滤波的基础,是本章所有滤波技术的基础。

因为比例常数 M N MN MN 通常很大,因此, ∣ F ( 0 , 0 ) ∣ |F(0,0)| F(0,0) 通常是频谱的最大成分。因为原点处的频率分量 u u u v v v 都是0,所以 F ( 0 , 0 ) F(0,0) F(0,0) 有时称为变换的直流(Direct Current, DC)分量。

在确定一幅图像的特性内容时相角所起的支配作用。

交叠错误

右列中各个周期靠得太近,互相干扰。IDFT得到的是线性卷积循环叠后的周期卷积结果。因此必须要先进行零填充。

零填充

交叠错误很容易解决。考虑两个函数 f ( x ) f(x) f(x) h ( x ) h (x) h(x) 它们分别由 A A A 个样本和 B B B 个样本组成 。 可以证明,如果在这两个函数中 填充零 使它们的长度 P P P 相同,按式 (4.97) 可避免交叠问题:

P ≥ A + B − 1 (4.97) P \geq A+B-1\tag{4.97} PA+B1(4.97)

频率泄漏

这类似于用一个 盒式函数 与一个函数相乘 在 频率域 它意味着 原变换与一个 sinc ⁡ \operatorname{sinc} sinc 函数的卷积 见(例 4.1),这将造成一个由 sinc ⁡ \operatorname{sinc} sinc 函数的高频分量产生所谓的 频率泄漏 (frequency leakage) 。频率泄漏会在图像上产生块效应 (blocking artifact) 。

虽然频率泄漏无法完全消除但让取样后的函数 乘以 另一个 两端平滑地过渡到 0 的函数(加窗,教材 P175),可明显降低频率泄漏。



4.7 频率域滤波基础

4.7.3 频率域滤波步骤小结

在这里插入图片描述
在这里插入图片描述

4.7.4 空间域和频率域滤波之间的对应关系

空间域滤波和频率域滤波间的纽带是卷积定理。

频率域中的滤波概念更加直观,且频率域中的滤波器设计也更容易。 取两个域中特性的优点的一种方法是:在频率域规定一个滤波器核, 计算其IDFT, 然后利用生成的全尺寸空间核的性质, 指导构建较小的核。



4.8 使用低通频率域滤波器平滑图像

ILPF的模糊和振铃性质可用卷积定理来解释。 图4.42(a)显示了半径为15、 大小为 1000 × 1000 1000× 1000 1000×1000 像素的一个频率域 ILPF 传递函数的图像。 图4.42(b)是 ILPF 的空间表示 h ( x , y ) h(x,y) h(x,y), 它是取图4.42(a)的IDFT得到的(注意振铃效应)。 图4.42(c)显示了过图4.42(b)的中心的一个灰度剖面, 其形状类似于 s i n c sinc sinc 函数。

在这里插入图片描述
s i n c sinc sinc 函数的中心波瓣是引起模糊的主因, 而外侧较小的波瓣是造成振铃效应的主因。因为空间函数的“分布”与 H ( u , v ) H(u,v) H(u,v) 的半径成反比, D 0 D_0 D0 越大, 空间函数就越趋近于一个与图像卷积时根本不会导致模糊的冲激。

如表4.4所示, 频率域高斯函数的傅里叶反变换也是高斯的。 这意味着计算式(4.115)或式(4.116)的IDFT得到的空间高斯滤波器核将没有振铃效应。

空间域一阶巴特沃斯滤波器没有振铃效应。 在2阶和3阶滤波器中, 振铃效应通常难以察觉, 但更高阶滤波器中的振铃效应很明显。

在这里插入图片描述
在这里插入图片描述



4.9 使用高通滤波器锐化图像

在这里插入图片描述
h H P ( x , y ) = J − 1 [ H H P ( u , v ) ] = J − 1 [ 1 − H L P ( u , v ) ] = δ ( x , y ) − h L P ( x , y ) \begin{aligned} h_{\mathrm{HP}}(x, y) & =\mathfrak{J}^{-1}\left[H_{\mathrm{HP}}(u, v)\right] \\ & =\mathfrak{J}^{-1}\left[1-H_{\mathrm{LP}}(u, v)\right] \\ & =\delta(x, y)-h_{\mathrm{LP}}(x, y) \end{aligned} hHP(x,y)=J1[HHP(u,v)]=J1[1HLP(u,v)]=δ(x,y)hLP(x,y)

在这里插入图片描述


http://www.ppmy.cn/news/209057.html

相关文章

常见的cpu型号

Intel Intel Core™ i3 Intel Core™ i5 Intel Core™ i7 Intel Core™ i9 Intel Xeon Intel Core™ m3 (https://zh.wikipedia.org/wiki/Intel_Core_M%E8%99%95%E7%90%86%E5%99%A8%E5%88%97%E8%A1%A8) 例子 Intel Xeon W-2140B CPU 3.20GHz Intel …

Intel CPU型号规格大全

Intel CPU型号规格大全 规格术语 Processor Number: 处理器号 Architecture: 架构(制造工艺) Cache: 高速缓存 Clock Speed: 时钟速度 Power: 功耗 Front Side Bus: 前端总线 Intel(R)VT: 英特尔虚拟化技术 Intel(R) 64Φ: 英特尔64位技术 Quad-core: 四核 Dual-core: 双核 Enh…

CPU型号大全

编者按:任何东西从发展到壮大都会经历一个过程,CPU能够发展到今天这个规模和成就,其中的发展史更是耐人寻味。作为电脑之“芯”的CPU也不例外,本文让我们进入时间不长却风云激荡的CPU发展历程中去。在这个回顾的过程中&#xff0c…

Intel CPU型号官网详解

https://www.intel.cn/content/www/cn/zh/processors/processor-numbers.html

intel cpu型号大全

按照处理器支持的平台来分,Intel处理器可分为台式机处理器、笔记本电脑处理器以及工作站/服务器处理器三大类;下面我们将根据这一分类为大家详细介绍不同处理器名称的含义与规格。由于Intel产品线跨度很长,不少过往产品已经完全或基本被市场淘…

【30】核心易中期刊推荐——人工智能图像处理

🚀🚀🚀NEW!!!核心易中期刊推荐栏目来啦 ~ 📚🍀 核心期刊在国内的应用范围非常广,核心期刊发表论文是国内很多作者晋升的硬性要求,并且在国内属于顶尖论文发表,具有很高的学术价值。在中文核心目录体系中,权威代表有CSSCI、CSCD和北大核心。其中,中文期刊的数…

javascript基础二十四:JavaScript中本地存储的方式有哪些?区别及应用场景?

一、方式 javaScript本地缓存的方法我们主要讲述以下四种: cookiesessionStoragelocalStorageindexedDB cookie Cookie,类型为「小型文本文件」,指某些网站为了辨别用户身份而储存在用户本地终端上的数据。是为了解决 HTTP无状态导致的问题…

经典算法:Fenwick Tree

经典算法:Fenwick Tree 1. 算法简介2. 原理介绍3. 算法实现4. 例题说明 1. 解题思路2. 代码实现 5. 参考链接 1. 算法简介 Fenwick Tree又称为Binary Indexed Tree,也算是一种常见的数据结构了。 他其实某种意义上来说算是Segment Tree的一种变体&…