【C++算法图解专栏】一篇文章带你入门二分算法

news/2024/11/22 12:41:11/

✍个人博客:https://blog.csdn.net/Newin2020?spm=1011.2415.3001.5343
📣专栏定位:为 0 基础刚入门数据结构与算法的小伙伴提供详细的讲解,也欢迎大佬们一起交流~
📚专栏地址:https://blog.csdn.net/Newin2020/article/details/126445229
❤️如果有收获的话,欢迎点赞👍收藏📁,您的支持就是我创作的最大动力💪
🎏唠叨唠叨:在这个专栏里我将会整理 PAT 甲级的真题题解,并将他们进行分类,方便大家参考。

二分法

这一讲我们来介绍一个经常出现在我们视野中的算法 —— 二分法,想必大家都不陌生,利用它可以优化很多过程,使时间复杂度骤降,正如其名二分一样,不用从头往后一个个的遍历。

虽然作为基础算法之一,但是想要完全掌握它并不容易,最让人折磨的是它那“迷人”的边界问题。作为初学者,没必要研究的过于细致,会对自信心有很大的打击,可以先记下模板,后面题目做多了就会慢慢体会出来,接下来我将给大家讲解二分法的一些常用算法和模板。

在此之前需强调一下,二分法只适用于有序序列中,在无序序列中使用二分法没有任何意义。

整数二分

还是继承我们的传统,边讲题目边介绍算法,首先来看第一道开胃菜。

猜数问题

给定 100 以内的一个数,让我们猜出是哪个数。

如果从 1 遍历到 100 那显得比较麻烦,特别是当数字范围扩大时,比如扩大到 10 万,那时间复杂度将非常的高。

所以就要用到二分法来做,每次取中值进行判断,然后再不断地缩小范围,直到超出边界为止,它可以将时间复杂度从 O(1) 降到 O(log2n),还是很可观的。

我们直接上代码:

#include<bits/stdc++.h>
using namespace std;
int a[1000];
int bin_search(int* a, int n, int x) {   //在数组a中找数字x,返回位置int left = 0, right = n;while (left < right) {int mid = left + (right - left) / 2;if (a[mid] >= x) right = mid;else             left = mid + 1;cout << a[mid] << " ";              //打印猜数的过程}return left;
}
int main() {int n = 100;for (int i = 0; i < n; i++) a[i] = i + 1;      //赋值,数字1~100int test = 54;                      //猜54这个数int pos = bin_search(a, n, test);cout << "\n" << "test=" << a[pos];
}

其中 mid=left+(right-left)/2 需要大家牢记,它等价于 mid=(left+right)/2,但因为防止整数过大导致溢出,所以我们常用前面那种写法。

另外,我相信这代码中最让人难以理解的是 leftright 两指针的边界问题,我这里采用的这种做法的 while 条件为 left<right 而不是 left<=right。这就考虑到循环内部的代码了,先来看看循环内部重点代码的含义分别是什么:

  • int mid=left+(right-left)/2 表示取左边界 left 和右边界 right 的中值,但需要注意的是由于特性,编译器在计算时遇到小数会自动向下取整,比如 5/2=2,这是一个很关键的点。
  • if(a[mid]>=x) right=mid 表示当中值大于等于目标值时,将右边界 right 缩小到 mid。因为目标值可能就是 mid,所以不能使 right=mid-1
  • else left=mid+1 表示当中值小于目标值时,将左边界 left 缩小到 mid+1。因为目标值现在只可能出现中值的右边,故如果使 left=mid 将毫无意义,已经确定 a[mid] 不是目标值了,并且还可能导致死循环。例如,left=0,right=1,则 mid=1/2=0,且 a[mid]<x,如果还让 left=mid 则循环将永远进行下去。

现在我们考虑,为什么不能让中值大于目标值时 right=mid-1 且中值小于等于目标值时 left=mid,即让上面判断条件反过来。还是上面那个例子,left=0,right=1,则 mid=1/2=0,且 a[mid]<=x,如果让 left=mid 则会死循环。当然也有解决方法,但为了避免混淆,只记住一种方法即可,在后续的使用中只用自己背过的那种处理方法。

但是这道题只是其中一种题型,我们需要背的不只这一个模板,因为这里解决的是一个确定的数,如果该数不存在怎么办,还需要进一步讨论,这就需要继续看我们下面的模板题了。

在单调递增序列中找 x 或者 x 的后继

在单调递增数列 a 中查找某个数 x,如果数列中没有 x,找比它大的第一个数。

这道题和上道题唯一不同的地方就是该题查找的数可能不存在,如果不存在则要找到大于它的第一个数,还是先来看代码:

#include<bits/stdc++.h>
using namespace std;
int a[1000];
int bin_search(int* a, int n, int x) {     //a[0]~a[n-1]是单调递增的int left = 0, right = n;              //注意:不是 n-1,此时是左闭右开的[0,n)while (left < right) {int mid = left + (right - left) / 2;  //int mid = (left + right) >> 1;if (a[mid] >= x)  right = mid;else    left = mid + 1;}                                     //终止于left = rightreturn left;
}
int main() {int n = 100;for (int i = 0; i < n; i++) a[i] = 2 * i + 2;      //赋值,数字2~200,偶数int test = 55;                        //找55或55的后继int pos = bin_search(a, n, test);cout << "test=" << a[pos];
}

可以发现,这个代码和上面一题的核心代码部分一模一样,说明这一类的题都可以用到这个模板。可能会有小伙伴有疑问,如果将 if else 中的条件互换会怎样,答案在下一道题中。

在单调递增序列中找 x 或者 x 的前驱

在单调递增数列 a 中查找某个数 x,如果数列中没有 x,找比它小的第一个数。

这道题咋一看好像和上题差不多,但代码却有区别,上面提到如果将 if else 中条件互换会怎样,来看代码:

#include<bits/stdc++.h>
using namespace std;
int a[1000];
int bin_search2(int* a, int n, int x) {    //a[0]~a[n-1]是单调递增的int left = 0, right = n;while (left < right) {int mid = left + (right - left + 1) / 2;if (a[mid] <= x)  left = mid;else  right = mid - 1;}                                     //终止于left = rightreturn left;
}
int main() {int n = 100;for (int i = 0; i < n; i++) a[i] = 2 * i + 2;     //赋值,数字2~200,偶数int test = 55;                       //找55或55的前驱int pos = bin_search2(a, n, test);cout << "test=" << a[pos];
}

可以发现把条件互换后,还变了一个地方就是 mid,不再是 mid=(left+right)/2,而是 mid=(left+right+1)/2,防止溢出改为 mid=left+(right-left+1)/2。这还是因为向下取整的特性,为了满足本题要求需要对此进行改动。

同样,如果将上面的 right=mid-1 改为 right=mid 也会出现死循环。

我们再来看一道稍微综合一点的模板题,帮助大家进一步理解。

数的范围

给定一个按照升序排列的长度为 n 的整数数组,以及 q 个查询。

对于每个查询,返回一个元素 k 的起始位置和终止位置(位置从 0 开始计数)。

如果数组中不存在该元素,则返回 -1 -1

输入格式

第一行包含整数 n 和 q,表示数组长度和询问个数。

第二行包含 n 个整数(均在 1∼10000 范围内),表示完整数组。

接下来 q 行,每行包含一个整数 k,表示一个询问元素。

输出格式

共 q 行,每行包含两个整数,表示所求元素的起始位置和终止位置。

如果数组中不存在该元素,则返回 -1 -1

数据范围

1≤n≤100000
1≤q≤10000
1≤k≤10000

输入样例:

6 3
1 2 2 3 3 4
3
4
5

输出样例:

3 4
5 5
-1 -1

这道题是不是看起来有点眼熟,好像和前面两题求前驱和后继的题目有点类似,还是先来看代码:

#include<bits/stdc++.h>
using namespace std;int k, n, q;
int arr[100010];//后继的代码模板 —— 找左端点
int bsearch_1(int l, int r)
{while (l < r){int mid = l + r >> 1;if (arr[mid] < k)   l = mid + 1;else r = mid;}return l;
}//前驱的代码模板 —— 找右端点
int bsearch_2(int l, int r)
{while (l < r){int mid = l + r + 1 >> 1;if (arr[mid] <= k) l = mid;else   r = mid - 1;}return l;
}int main()
{scanf("%d%d", &n, &q);for (int i = 0; i < n; i++){scanf("%d", &arr[i]);}while (q--){scanf("%d", &k);int x = bsearch_1(0, n - 1);	//寻找左端点if (arr[x] != k)    printf("-1 ");else printf("%d ", x);x = bsearch_2(0, n - 1);	//寻找右端点if (arr[x] != k)    printf("-1\n");else printf("%d\n", x);}return 0;
}

本题需要我们找到目标值的相同区间,其中用到的代码模板就是前面两题的模板,归类一下:

  • 寻找左端点:套用后继代码模板
  • 寻找右端点:套用前驱代码模板

这样一看是不是要明朗一些,很多题目其实就是基于这些模板扩展来的。

浮点数二分

浮点数二分就没有整数二分那种烦人的边界问题,因为没有了向下取整,我们只需要考虑其中的精度问题,还是先来看一道模板题。

数的三次方根

给定一个浮点数 n,求它的三次方根。

输入格式

共一行,包含一个浮点数 n。

输出格式

共一行,包含一个浮点数,表示问题的解。

注意,结果保留 6 位小数。

数据范围

−10000≤n≤10000

输入样例:

1000.00

输出样例:

10.000000

这道题一开始看可能会有点懵,不知道这和二分有啥关系。在上面的模板当中,if 语句中的判断其实是可以变的,根据题目的要求进行变化。这道题我们可以对数的三次方根进行二分,先来看代码:

#include<bits/stdc++.h>
using namespace std;double n;int main()
{cin >> n;const double eps = 1e-8;double l = -100, r = 100;while (r - l > eps){double mid = (r + l) / 2;if (mid * mid * mid >= n)   r = mid;else l = mid;}printf("%.6lf\n", l);return 0;
}

可以发现我们将左边界和右边界分别设置为了 l=-100r=100,这样能够包含数据的范围,计算时区间回往中间收缩直至找到答案。另外,不用再因为边界问题而苦恼,lr 在收缩时不用加一减一,直接等于 mid 即可。

但是要注意的是,浮点数会存在精度问题,可能 rl 永远不相等,所以我们需要模拟相等的情形即只要 rl 的差值足够小,我们就认为它相等。题目要求保留 6 位小数,所以我们可以将精度设置为 1e-8,即当 r-l 只要小于等于 1e-8,我们就认为此时已经收敛到某个值,直接退出循环即可。

总结

恭喜您成功点亮二分算法技能点!

通过上面这么多道模板题,可以发现其中的一些规律,这些题目的二分模板其实都差不多,但是从浮点数二分的模板题来看好像模板中 if 条件可能不同。很多题目不会明摆的告诉你这道题可以用二分来做,需要我们自己去找到其中的划分依据作为 if 中的判断条件,不过大体上模板都是一样的,因此二分的应用场景为:

  1. 存在一个有序的序列
  2. 可以将题目建模在一个有序序列上查找一个合适的数值

另外,我们仍然可以得出大部分题目通用的模板,如下:

整数二分通用模板

bool check(int x) {/* ... */} //检查x是否满足某种性质//区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用,例如求一串相同数字的左边界或者某个数字及其后驱
//也就是说我们要找的这个点要尽可能的小,不断缩小右边界,但是每次的结果可能是目标值,故r=mid
int bsearch_1(int l, int r) {while (l < r) {int mid = l + (r - l) / 2;	//这样可以防止爆intif (check(mid))	//mid满足条件,需要保留r = mid;    //check()判断mid是否满足性质elsel = mid + 1;}return l;
}//区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用,例如求一串相同数字的右边界或者某个数字及其前驱
//也就是说我们要找的这个点要尽可能的大,不断缩小左边界,但是每次的结果可能是目标值,故l=mid
int bsearch_2(int l, int r) {while (l < r) {//这里要加1是因为除法是向下取整,如果不加1那么当只有两个数时,l=mid会进入死循环int mid = l + r + 1 >> 1;if (check(mid))	//mid满足条件,需要保留l = mid;elser = mid - 1;}return l;
}

浮点数二分通用模板

bool check(double x) {/* ... */} // 检查x是否满足某种性质double bsearch_3(double l, double r)
{const double eps = 1e-6;   // eps 表示精度,取决于题目对精度的要求while (r - l > eps){double mid = (l + r) / 2;if (check(mid)) r = mid;else l = mid;}return l;
}

http://www.ppmy.cn/news/20833.html

相关文章

element 日期组件实现只能选择小时或者只能选择小时、分钟

前言 在使用 element 框架时&#xff0c;总是会有一些满足不了现有项目需求的问题&#xff0c;这个时候就需要我们对 element 的组件进行改造&#xff0c;最近有一个需求就是要求日期组件只能选择年月日时&#xff0c;不要分钟和秒&#xff0c;找了一圈&#xff0c;发现 elemen…

linux内核之netlink通信

Linux内核(04)之netlink通信 Author&#xff1a;Onceday Date&#xff1a;2023年1月3日 漫漫长路&#xff0c;才刚刚开始… 参考文档&#xff1a; netlink 机制 binarydady 阿里云开发者社区linux中通用Netlink详解及使用剖析 binarydady 阿里云开发者社区RFC 3549 Linux N…

【算法基础】双指针算法⭐⭐⭐⭐

一、字符串切分 1. Sample Input abc ppl ldk2. Sample Output abc ppl ldk3. 题解 #include <bits/stdc++.h> using namespace std; const int maxn = 1e5 + 10;

jQuery相较于原生js的优势

原生js的api名字都太长难记原生js有时候代码冗余原生js中有些属性或者方法&#xff0c;有浏览器兼容问题。原生js容错率比较低&#xff0c;前面的代码不能添加多个入口函数(window.onload)&#xff0c;如果添加了多个&#xff0c;后面的会把前面的给覆盖jQuery即library,是一个…

游戏SDK(一) 客户端整体架构

游戏SDK 客户端整体架构 前言 从事游戏SDK的开发好几年&#xff0c;包括 Android 端及 iOS 端&#xff0c;做过休闲游戏SDK 也做过重度手游SDK&#xff0c;从对SDK和游戏行业一无所知到现在还算有些了解&#xff0c;踩过很多坑&#xff0c;也辗转过几家不同的游戏公司。想着把…

Centos7搭建Hadoop集群(V3.3.4)

Centos7搭建Hadoop集群V3.3.4一、准备工作1、配置hostname2、hosts映射3、关闭防火墙4、同步时间5、关闭selinux6、配置ssh免密登陆7、重启二、安装所需环境1、jdk安装2、hadoop安装三、修改配置hadoop-env.shcore-site.xmlhdfs-site.xmlmapred-site.xmlyarn-site.xmlworkers四…

【K8S系列】Pod重启策略及重启可能原因

目录 1 重启策略 1.1 Always 1.2 OnFailure 1.3 Nerver 1.4 yaml示例 2 Pod常见异常状态 2.1 Pending状态 2.2 Waiting/ContainerCreating状态 2.3 CrashLoopBackOff状态 2.4 ImagePullBackOff状态 2.5 Error状态 2.6 其他状态说明 tips: 3.自动重启的可能原…

Linux之环境搭建

目录 一、VMware 二、centos7的安装 三、Mysql安装 四、 前端项目部署 1.确保前台项目能用 2.将前台项目打包npm run build 3.做ip/host主机映射 4.完成Nginx动静分离的default.conf的相关配置 5.将前端构件号的dist项目&#xff0c;上传到云服务器/usr/local/... …