【数据结构之二叉树系列】二叉树的基本知识

news/2024/11/27 19:29:56/

目录

    • 前言
    • 一、树
        • 1、树的相关概念
          • (1)结点
          • (2)结点的度
          • (3)叶结点
          • (4)分支结点
          • (5)父亲结点
          • (6)子节点
          • (7)树的度
          • (8)结点的层次
          • (9)树的深度(高度)
          • (10)结点的祖先
          • (11)子树
        • 2、树的表示方法
    • 二、二叉树
        • 1、特殊的二叉树
          • (1)满二叉树
          • (2)完全二叉树
    • 三、二叉树的一些重要性质
    • 四、二叉树的一些常见题目

前言

前面我们学习的都是一些线性的数据结构,比顺序表,链表,栈和队列,逻辑结构比较简单,今天我们重点学习的是一种非线性的数据结构,就是树形结构。

一、树

在现实生活中我们都看到过树,如下图,所以对树的形状会有一个基本的认知
在这里插入图片描述
但是在数据结构这门课中我们学习的树可就不是长上面这个样子了,而是下面这个奇怪的样子:
在这里插入图片描述
在这里插入图片描述

1、树的相关概念

(1)结点

每一个树都是由一个个小小的单元组成,在数据结构中,我们将这样的小单元称为结点。
在这里插入图片描述
像上面ABCDEF都是这棵树的结点。

(2)结点的度

每一个结点都是相当于一棵子树的根,而根又会有很多的分支,在数据结构中,一个结点有多少个分支,我们就说这个结点的度为多少。比如:
在这里插入图片描述
像上面这个图中,A这个结点有三个分支,就说明A的度为3。E和F这两个结点没有分支,我们就说这两个结点的度为0。

(3)叶结点

我们将度为0的结点称为叶子结点,或简称为叶节点。如下图中的EF结点度为0,所以它们为叶节点。
在这里插入图片描述

(4)分支结点

与叶子结点相反,度不为0的结点我们称为分支结点,如下图中AC结点的度不为0,所以AC结点为分支结点。
在这里插入图片描述

(5)父亲结点

如果一个结点含有分支,也就是包含子树,则我们将这个结点称为其子树的父亲结点或双亲结点,后面我们是用parent来表示。如下图中的A结点有三个分支BCD结点,所以我们成A结点是BCD结点的父亲结点。
在这里插入图片描述

(6)子节点

一个结点含有的子树的根结点我们称为这个结点的子节点,就是我们要知道一个子树是由自己的根节点和另外的子树构成的。下图中:A包含BCD三个子树,BCD三个结点分别为对应子树的根节点,所以我们成BCD结点为A结点的子节点,后面我们是用child来表示。
在这里插入图片描述

(7)树的度

一棵树中所有结点中度最大的结点的度我们称为这棵树的度,下图中:显然A结点的度最大,是3,所以我们说这棵树的度为3。
在这里插入图片描述

(8)结点的层次

从这棵树的根节点开始定义,我们说根结点是第一层,其子树的根节点为第三层,以此类推。下图中:A为第一层,BCD为第二层,EF为第三层。
在这里插入图片描述

(9)树的深度(高度)

一棵树最大的层次就是这棵树的深度(高度),如下图中:这棵树的最大层次为3,所以我们说这棵树的深度(高度)为3。
在这里插入图片描述

(10)结点的祖先

从根到该节点所经分支上的所有结点都称为该节点的祖先,注:在OJ题中一个结点也可以算成其自己的祖先。如下图中:从A到E,经历了ACE,所以我们成ACE结点都是E结点的祖先。
在这里插入图片描述

(11)子树

任意一个结点都可以说是由根节点和其自己的子树组成

2、树的表示方法

上面介绍的树是树中的一种特殊的结构,二叉树,二叉树中每个节点的度最大为2,但是树就不一样了,树中的每一个结点的度是不确定的,可多可少。所以表示起来会比较麻烦,在这里我们学习一种比较优秀的表示方法:孩子兄弟表示法,这个方法需要和前面学习的链表结合起来,首先需要定义树中结点的结构

// 定义树存储的数据类型
typedef int TreeDataType;// 定义一棵树的结点的结构
struct TreeNode
{TreeDataType data;struct TreeNode* first_child;struct TreeNode* next_brother;
};

其中data表示结点存储的值,first_child指向的是该节点的第一个孩子,next_brother指向的是该节点向右的下一个结点,我们称为兄弟结点。如下图:
在这里插入图片描述

二、二叉树

一棵树中,如果每一个结点的度都不超过2,则称这棵树为二叉树。二叉树中的孩子结点是有左右之分的,位于左边的结点称为左孩子结点,位于右边的结点称为右孩子结点,子树同样也有左右之分,位于左边的称为左子树,位于右边的称为右子树。
在这里插入图片描述

1、特殊的二叉树

(1)满二叉树

如果每一层的结点都达到最大值,则我们称这棵树为满二叉树,如:一棵树中,第一层是根节点,最多只有一个结点,第二层最大有两个结点,第三层最多有四个结点,第四层最多有8个结点,以此类推,第N层最多有2^(N-1)个结点,如下图就是一棵满二叉树。
在这里插入图片描述
在这里插入图片描述

(2)完全二叉树

满二叉树是一种特殊的完全二叉树,完全二叉树的特点是:如果这棵树有N层,前N-1层的结点树都是达到对应层的最大值,最后一层可能达到最大,也可能未达到最大,但是从左到右是满的
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、二叉树的一些重要性质

  1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1)个结点,如果这棵树是满二叉树,那么此时每一层的结点的数量都会满足以上的性质
  2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点树为2^h -1,如果这个树是满二叉树,那么此时这个数的结点数就是达到最大值,为2^h -1,这个结论是根据等比数列的求和公式计算得出的
  3. 对于任何的一棵二叉树,如果度为0的结点的个数为n0,度为2的结点个数为n2,那么此时会满足:n0 = n2+1,通常情况下,要注意题目是否给出一个条件是完全二叉树,如果题目说这棵树是一棵完全二叉树,那么此时可以知道,树中度为1的结点个数可能为0或者1,当树中存在的根节点只存在左子树时,那么这种情况下,度为1的结点数为1,当树中不存在这样的子树时,也就是树中的每一个子树都是同时存在左右子树的,那么此时树中度为1的结点数为0。
  4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度为h = log2(n+1),这个结论是由第2个性质推出来的
  5. 对于具有n个结点的完全二叉树,如果按照从上至下从左到右的数组顺序对所有结点从0开始编号,则对序号为i的结点有:
  • i>0,i位置的结点存在双亲结点,序号为:(i-1)/2,若i = 0,则说明此时该节点为该树的根节点,不存在双亲结点
  • 2*i+1<n,则说明该结点存在左子树,左子树的根节点序号为:2*i+12*i+1>=n,则说明该结点不存在左子树
  • 2*i+2<n,则说明该结点存在右子树,右子树的根节点序号为:2*i+22*i+2>=n,则说明该结点不存在右子树

四、二叉树的一些常见题目

  1. 某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为( )
    A 不存在这样的二叉树
    B 200
    C 198
    D 199

解:根据二叉树的性质,度为0的结点数比度为2的结点数多1可得答案。

2.下列数据结构中,不适合采用顺序存储结构的是( )
A 非完全二叉树
B 堆
C 队列
D 栈

解:非完全二叉树由于其中可能存在只有右子树的情况,所以如果将非完全二叉树中的结点存在于数组中,那么就可能出现内存空间浪费的现象,因此,非完全二叉树不适合顺序存储。堆的本质就是完全二叉树,其中的结点适合存在数组中按下标进行编号,不会出现空间浪费。队列和栈在前面学习过,都是经典的线性结构,适合存在于数组中。

3.在具有 2n 个结点的完全二叉树中,叶子结点个数为( )
A n
B n+1
C n-1
D n/2

解:假设树中叶子结点的个数为x,则度为2的结点个数为x-1,要注意题目中的一个隐含的条件,就是完全二叉树,这个条件告诉我们,树中度为1的结点的数量可能为1或者0,所以我们需要进行分类讨论:
当树中的度为1的结点数为1时:x + x-1 +1 = 2n,即2x = 2n,x = n,此时叶子结点的个数为n
当树中的度为1的结点数为1时:x + x-1 = 2n,即2x = 2n+1,x = n+1/2,显然不符合条件 综上,叶子结点的个数为n

4.一棵完全二叉树的节点数位531个,那么这棵树的高度为( )
A 11
B 10
C 8
D 12

解:这道题告诉了我们树的总结点数,所以我们需要想性质,二叉树的最大结点数量为:2^h -1,假设该树的深度为10,则最大结点数位:2^10 -1,就是1023,当该树的深度为9时,最大结点数为:511<523,显然不符合题意,所以该树的深度为10,前9层是满的,最后一层不满


5.一个具有767个节点的完全二叉树,其叶子节点个数为()
A 383
B 384
C 385
D 386

解:解法与第3题一样


http://www.ppmy.cn/news/19035.html

相关文章

【c语言】数据结构-顺序表

主页&#xff1a;114514的代码大冒险 qq:2188956112&#xff08;欢迎小伙伴呀hi✿(。◕ᴗ◕。)✿ &#xff09; Gitee&#xff1a;庄嘉豪 (zhuang-jiahaoxxx) - Gitee.com 文章目录 目录 文章目录 前言 一、顺序表是什么&#xff1f; 二、项目功能的逐一实现&#xff08;基本&a…

【求职】济南地区-运维工程师

自我介绍 学历 全日制统招专升本&#xff0c;专科18年毕业&#xff0c;本科20年毕业。 专业 专科计算机网络&#xff0c;本科计算机应用与科学 职业 山东人&#xff0c;在北京一家创业公司从事运维工程师岗位。目前薪资16*16。 个人经历 2015-2018 初识网络 专科学校期…

MySQL server options

介绍 MySQL安装部署时&#xff0c;经常会关注一些参数是否合理。其实这些参数分为两类型。环境中调整的绝大部分是引擎层方面的。服务层参数&#xff0c;就是mysqld服务启动时的参数&#xff0c;如&#xff1a;datadir&#xff0c;port&#xff0c;socket之类的的&#xff0c;…

Kotlin中标准库函数(apply、let、run、with、also、takeIf、takeUnless)的使用详解

博主前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住也分享一下给大家 &#x1f449;点击跳转到教程 一、apply函数 apply apply函数可以看作是一个配置函数&#xff0c;你可以传入一个接收者&#xff0c;然后调用一系列函…

C++进阶 哈希表封装unordered_map和unordered_set

作者&#xff1a;小萌新 专栏&#xff1a;C进阶 作者简介&#xff1a;大二学生 希望能和大家一起进步&#xff01; 本篇博客简介&#xff1a;使用哈希表封装unordered_map和unordered_set 哈希表源代码 我们下面会对一个 K V 模型的哈希表进行封装 使用之来模拟实现STL库中的…

Vue TypeScript 使用eval函数的坑

正常情况下&#xff0c;项目里不会用eval函数&#xff0c;但是万一要调用一个全局的js库&#xff0c;就需要用eval做些骚操作&#xff0c;这个时候编译会提示&#xff1a; is strongly discouraged as it poses security risks and may cause issues with minification. 警告是…

ARP渗透与攻防(三)之流量分析

ARP攻击-流量分析 ARP渗透与攻防(一)之ARP原理 ARP渗透与攻防(二)之断网攻击 系列文章 1.环境准备 1.kali作为攻击机 2.win10作为靶机 IP地址&#xff1a;192.168.110.11 3.网关 IP地址&#xff1a;192.168.110.1 2.kali数据包转发 出于安全考虑&#xff0c;Linux系统默…

Godot根据遮罩图移动粒子

前言 目前UI粒子特效unity引擎比较多&#xff0c;也好找资料&#xff0c;但是一般都是利用模型&#xff0c;使用3D粒子伪装2D效果。 Godot中也可以做到这一点&#xff0c;并且Godot有专门的2D粒子系统&#xff0c;可以通过一张遮罩图对粒子的位置进行设置。 godot粒子教程 …