Article
Time Limit: 20 Sec Memory Limit: 256 MB
题目连接
http://acm.hdu.edu.cn/showproblem.php?pid=5236
Description
Input
First line: an positive integer 0≤T≤20 indicating the number of cases.
Next T lines: each line has a positive integer n≤105, a positive real 0.1≤p≤0.9, and a positive integer x≤100.
Output
For each test case: output ''Case #k: ans'' (without quotes), where k is the number of the test cases, and ans is the expectation of keys of the optimal strategy.
Your answer is considered correct if and only if the absolute error or the relative error is smaller than 10−6.
Sample Input
Sample Output
Case #1: 4.000000 Case #2: 6.444444
HINT
题意
要求输入一篇N个字符的文章,对所有非负整数i:
每到第i+0.1秒时可以输入一个文章字符
每到第i+0.9秒时有P的概率崩溃(回到开头或者上一个存盘点)
每到第i秒有一次机会可以选择按下X个键存盘,或者不存
打印完整篇文章之后必须存盘一次才算完成
输入多组N,P,X选择最佳策略使得输入完整篇文章时候按键的期望最小,输出此期望
题解:
首先我们先分析不考虑保存的情况的dp
dp[i]=dp[i-1]+p*(1+dp[i])+(1-p);
敲出i个字符, 首先得敲出i-1个字符, 所以有第一部分的dp[i-1]; 然后敲下一个字符时, 有两种可能, p概率会丢失, (1-p)概率不会丢失, 对于丢失的情况就还得重新敲dp[i]次了(期望次数), 不丢失的情况就只有一次就成功了, 所以是(1-p) * 1。
所以化简为: dp[i] = (dp[i-1] + 1) / ( 1- p)
然后我们就考虑保存了,我们枚举保存的次数
然后很显然,我们得均匀的保存,这样子贪心就好了
转自:http://www.cnblogs.com/qscqesze/p/4543740.html
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<vector>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<algorithm>
using namespace std;
const int maxn=100010;
const double INF=1e16;
double dp[maxn];
int N,X;
double P;
int main()
{int T,cas=1;scanf("%d",&T);while(T--){scanf("%d%lf%d",&N,&P,&X);memset(dp,0,sizeof(dp));for(int i=1;i<=N;i++)dp[i]=(dp[i-1]+1)/(1-P);double ans=INF;for(int i=1;i<=N;i++){int a=N/i,b=N%i;ans=min(ans,dp[a+1]*b+dp[a]*(i-b)+X*i);}printf("Case #%d: %.6lf\n",cas++,ans);}return 0;
}