聚类注意点
样本异常数据
K均值(K-Means)是聚类中最常用的方法之一,它基于点与点距离的相似度来计算最佳类别归属。但K均值在应用之前一定要注意两种数据异常:
- 数据的异常值:数据中的异常值能明显改变不同点之间的距离相似度,并且这种影响是非常显著的。因此基于距离相似度的判别模式下,异常值的处理必不可少。
- 数据的异常量纲:不同的维度和变量之间,如果存在数值规模或量纲的差异,那么在做距离之前需要先将变量归一化或标准化。例如,跳出率的数值分布区间是[0,1],订单金额可能是[0,10000000],而订单数量则是[0,1000]。如果没有归一化或标准化操作,那么相似度将主要受到订单金额的影响。
样本数据量过大
数据量过大的时候不适合使用KMeans算法
K-Means在算法稳定性、效率和准确率(相对于真实标签的判别)上表现非常好,并且在应对大量数据时依然如此。它的算法时间复杂度上界为n kt,其中n是样本量、k是划分的聚类数、t是迭代次数。
当聚类数和迭代次数不变时,K均值的算法消耗时间只跟样本量有关,因此会呈线性增长趋势。
当真正面对海量数据时,使用K均值算法将面临严重的结果延迟,尤其是当K均值被用做实时性或准实时性的数据预处理、分析和建模时,这种瓶颈效应尤为明显。
针对K均值的这一问题,很多延伸算法出现了, MiniBatchKMeans就是其中一个典型代表。
MiniBatchKMeans使用了一个名为Mini Batch(分批处理)的方法计算数据点之间的距离。
MiniBatch的好处是计算过程中不必使用所有的数据样本,而是从不同类别的样本中 抽取一部分样本(而非全部样本)作为代表参与聚类算法过程。
由于计算样本量少,所以会相应减少运行时间;但另一方面,由于是抽样方法,抽样样本很难完全代表整体样本的全部特征,因此会带来准确度的下降