第J3周:DenseNet121算法实现01(Pytorch版)

news/2025/3/24 2:40:09/
  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

目标

具体实现

(一)环境

语言环境:Python 3.10
编 译 器: PyCharm
框 架: Pytorch

(二)具体步骤
1. DenseNet121.py
import torch  
import torch.nn as nn  
import torch.nn.functional as F  
import math  # 实现DenseLayer(密集连接层)  
class DenseLayer(nn.Module):  def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):  super(DenseLayer, self).__init__()  # BN -> ReLU -> Conv(1x1) -> BN -> ReLU -> Conv(3x3)  self.norm1 = nn.BatchNorm2d(num_input_features)  # 第一个批归一化层  self.relu1 = nn.ReLU(inplace=True)  # 第一个ReLU激活函数  self.conv1 = nn.Conv2d(num_input_features, bn_size * growth_rate,  kernel_size=1, stride=1, bias=False)  # 1x1卷积层  self.norm2 = nn.BatchNorm2d(bn_size * growth_rate)  # 第二个批归一化层  self.relu2 = nn.ReLU(inplace=True)  # 第二个ReLU激活函数  self.conv2 = nn.Conv2d(bn_size * growth_rate, growth_rate,  kernel_size=3, stride=1, padding=1, bias=False)  # 3x3卷积层  self.drop_rate = drop_rate  # Dropout率  def forward(self, x):  # 保存输入特征,用于后续的密集连接  new_features = self.norm1(x)  new_features = self.relu1(new_features)  new_features = self.conv1(new_features)  new_features = self.norm2(new_features)  new_features = self.relu2(new_features)  new_features = self.conv2(new_features)  # 如果设置了dropout,则应用dropout  if self.drop_rate > 0:  new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)  # 将新特征与输入特征进行拼接,实现密集连接  return torch.cat([x, new_features], 1)  # 实现DenseBlock(密集块)  
class DenseBlock(nn.Module):  def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):  super(DenseBlock, self).__init__()  # 创建指定数量的DenseLayer,每一层的输入特征数量都会增加  self.layers = nn.ModuleList()  for i in range(num_layers):  layer = DenseLayer(  num_input_features + i * growth_rate,  growth_rate=growth_rate,  bn_size=bn_size,  drop_rate=drop_rate  )  self.layers.append(layer)  def forward(self, x):  # 依次通过所有的DenseLayer  features = x  for layer in self.layers:  features = layer(features)  return features  # 实现TransitionLayer(过渡层)  
class TransitionLayer(nn.Module):  def __init__(self, num_input_features, num_output_features):  super(TransitionLayer, self).__init__()  # BN -> Conv(1x1) -> AvgPool(2x2)  self.norm = nn.BatchNorm2d(num_input_features)  # 批归一化层  self.relu = nn.ReLU(inplace=True)  # ReLU激活函数  self.conv = nn.Conv2d(num_input_features, num_output_features,  kernel_size=1, stride=1, bias=False)  # 1x1卷积层  self.pool = nn.AvgPool2d(kernel_size=2, stride=2)  # 平均池化层  def forward(self, x):  x = self.norm(x)  x = self.relu(x)  x = self.conv(x)  x = self.pool(x)  return x  # 实现完整的DenseNet121模型  
class DenseNet121(nn.Module):  def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16),  num_init_features=64, bn_size=4, drop_rate=0, num_classes=1000):  super(DenseNet121, self).__init__()  # 首先是一个7x7的卷积层,步长为2  self.features = nn.Sequential()  self.features.add_module('conv0',  nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False))  # 初始卷积层  self.features.add_module('norm0', nn.BatchNorm2d(num_init_features))  # 批归一化层  self.features.add_module('relu0', nn.ReLU(inplace=True))  # ReLU激活函数  self.features.add_module('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1))  # 最大池化层  # 依次添加DenseBlock和TransitionLayer  num_features = num_init_features  for i, num_layers in enumerate(block_config):  # 添加DenseBlock  block = DenseBlock(  num_layers=num_layers,  num_input_features=num_features,  bn_size=bn_size,  growth_rate=growth_rate,  drop_rate=drop_rate  )  self.features.add_module(f'denseblock{i + 1}', block)  num_features = num_features + num_layers * growth_rate  # 如果不是最后一个block,则添加TransitionLayer  if i != len(block_config) - 1:  # 过渡层将特征图数量减半  trans = TransitionLayer(  num_input_features=num_features,  num_output_features=num_features // 2  )  self.features.add_module(f'transition{i + 1}', trans)  num_features = num_features // 2  # 最后添加一个BatchNorm  self.features.add_module('norm5', nn.BatchNorm2d(num_features))  # 最终的批归一化层  # 全局平均池化和分类器  self.classifier = nn.Linear(num_features, num_classes)  # 全连接分类器  # 初始化权重  for m in self.modules():  if isinstance(m, nn.Conv2d):  nn.init.kaiming_normal_(m.weight)  # 使用Kaiming初始化卷积层权重  elif isinstance(m, nn.BatchNorm2d):  nn.init.constant_(m.weight, 1)  # 初始化批归一化层的权重为1  nn.init.constant_(m.bias, 0)  # 初始化批归一化层的偏置为0  elif isinstance(m, nn.Linear):  nn.init.constant_(m.bias, 0)  # 初始化全连接层的偏置为0  def forward(self, x):  features = self.features(x)  # 提取特征  out = F.relu(features, inplace=True)  # 应用ReLU激活函数  out = F.adaptive_avg_pool2d(out, (1, 1))  # 全局平均池化  out = torch.flatten(out, 1)  # 展平特征  out = self.classifier(out)  # 分类  return out  # 创建DenseNet121模型实例  
def create_densenet121(num_classes=1000, pretrained=False):  model = DenseNet121(num_classes=num_classes)  return model  # 使用示例  
if __name__ == "__main__":  # 创建模型  model = create_densenet121()  print(model)  # 创建随机输入张量 (batch_size, channels, height, width)    x = torch.randn(1, 3, 224, 224)  # 前向传播  output = model(x)  print(f"Input shape: {x.shape}")  print(f"Output shape: {output.shape}")

image.png


http://www.ppmy.cn/news/1581269.html

相关文章

Redis 实现分布式锁全解析:从原理到实践

在分布式系统开发的广袤领域中,资源竞争问题宛如隐藏在暗处的礁石,时刻威胁着系统的稳定性与数据一致性。当多个服务实例如同脱缰野马般同时冲向同一份共享数据,试图进行修改操作时,一场混乱的 “数据抢夺战” 便悄然上演。此时&a…

使用DeepSeek翻译英文科技论文,以MarkDown格式输出,使用Writage 3.3.1插件转换为Word文件

一、使用DeepSeek翻译英文科技论文,以MarkDown格式输出 以科技论文“Electrical Power System Sizing within the Numerical Propulsion System Simulation”为例。 关于Writage 3.3.1的进一步了解,可发送邮件至邮箱pyengine163.com. 首先,打…

StarRocks 升级注意事项

前段时间升级了生产环境的 StarRocks,从 3.3.3 升级到了 3.3.9,期间还是踩了不少坑所以在这里记录下。 因为我们的集群使用的是存算分离的版本,也是使用官方提供的 operator 部署在 kubernetes 里的,所以没法按照官方的流程进入虚…

Google C++编码规范指南(含pdf)

Google C 编码规范的核心内容 1. 核心目标:通过统一的代码风格和命名规则,确保代码易于阅读和维护。避免复杂结构(如多重继承、复杂模板),优先使用简单、直观的实现方式。减少潜在的内存泄漏、悬空指针等问题&#xff…

在Windows和Linux系统上的Docker环境中使用的镜像是否相同

在Windows和Linux系统上的Docker环境中使用的镜像是否相同,取决于具体的运行模式和目标平台: 1. Linux容器模式(默认/常见场景) Windows系统: 当Windows上的Docker以Linux容器模式运行时(默认方式&#xf…

前端开发:Vue以及Vue的路由

Vue是什么 警告:本文作者是底层程序员,对Vue只是偶尔用到,研究并不深入,对Vue的理解可能非常肤浅甚至存在错误,请多包含。以下文字只为外行记录分享,专业前端朋友可以略过。 作为一个底层老程序员&#x…

docker-存储卷-网络

前言 绑定卷bind mount -v 参数创建卷 功能: 完成卷映射 • 语法 docker run -v name:directory[:options] … • 参数 ○ 第一个参数:宿主机目录,这个和管理卷是不一样的 ○ 第二个参数:卷映射到容器的目…

动态规划感悟1

下面的感悟主要还是基于力扣上面动态规划(基础版)得出来的相关的做题结论 动态规划(基础版) - 学习计划 - 力扣(LeetCode)全球极客挚爱的技术成长平台 首先是 斐波那契类型的动态规划 70. 爬楼梯 - 力扣…