深度学习有哪些算法?

news/2025/3/20 16:00:26/

深度学习包含多种算法和模型,广泛应用于图像处理、自然语言处理、语音识别等领域。以下是主要分类及代表性算法


一、基础神经网络

  1. 多层感知机(MLP)
    • 最简单的深度学习模型,由多个全连接层组成,用于分类和回归任务。

二、卷积神经网络(CNN)

用于处理网格状数据(如图像、视频):

  1. 经典模型
    • LeNet:早期手写数字识别模型。
    • AlexNet:引入ReLU和Dropout,推动深度学习复兴。
    • VGGNet:通过堆叠小卷积核提升性能。
    • ResNet:残差连接解决深层网络梯度消失问题。
    • Inception:多尺度卷积并行处理(如GoogLeNet)。
  2. 应用扩展
    • 目标检测:Faster R-CNN、YOLO、SSD。
    • 图像分割:U-Net、Mask R-CNN。

三、循环神经网络(RNN)

处理序列数据(如文本、时间序列):

  1. 基础RNN
    • 通过循环结构捕捉时序依赖,但存在梯度消失问题。
  2. 改进变体
    • LSTM:门控机制缓解长程依赖问题。
    • GRU:简化版LSTM,计算效率更高。
    • Bi-RNN:双向处理序列(如Bi-LSTM)。
  3. 应用模型
    • Seq2Seq:机器翻译(如编码器-解码器结构)。
    • Attention机制:提升长序列建模能力(如Transformer的基础)。

四、Transformer 模型

基于自注意力机制,替代RNN处理序列:

  1. 核心架构
    • Multi-Head Attention:并行捕捉不同位置关系。
    • 位置编码:注入序列位置信息。
  2. 衍生模型
    • BERT:双向预训练模型,适用于NLP任务。
    • GPT系列:自回归生成模型(如GPT-3、ChatGPT)。
    • ViT:将Transformer应用于图像分类。

五、生成模型

学习数据分布并生成新样本:

  1. 生成对抗网络(GAN)
    • 生成器与判别器对抗训练,用于图像生成、风格迁移。
    • 变体:DCGAN、CycleGAN、StyleGAN。
  2. 变分自编码器(VAE)
    • 通过概率编码-解码生成数据,支持隐空间插值。
  3. 扩散模型(Diffusion Models)
    • 逐步去噪生成样本(如Stable Diffusion、DALL·E)。

六、无监督/自监督学习

  1. 自编码器(Autoencoder)
    • 压缩与重建数据,用于降维或去噪。
  2. 对比学习(Contrastive Learning)
    • 如SimCLR、MoCo,通过样本对比学习特征表示。

七、强化学习与深度强化学习(DRL)

  1. 价值函数方法
    • DQN:结合Q-Learning与深度网络。
  2. 策略梯度方法
    • REINFORCEPPO:直接优化策略。
  3. Actor-Critic
    • 结合价值函数与策略梯度(如A3C)。

八、图神经网络(GNN)

处理图结构数据(社交网络、分子结构):

  1. 经典模型
    • GCN:图卷积网络。
    • GAT:引入注意力机制。
    • GraphSAGE:归纳式学习节点特征。

九、其他高级模型

  1. 元学习(Meta-Learning)
    • 学习如何快速适应新任务(如MAML)。
  2. 神经架构搜索(NAS)
    • 自动设计网络结构(如EfficientNet)。

十、应用领域

  • 计算机视觉:图像分类、目标检测、人脸识别。
  • 自然语言处理:机器翻译、文本生成、情感分析。
  • 语音处理:语音识别、合成。
  • 推荐系统:个性化推荐。
  • 科学计算:蛋白质结构预测(如AlphaFold)。

发展趋势

  1. 大模型:参数规模持续增长(如GPT-4、PaLM)。
  2. 多模态融合:同时处理文本、图像、语音(如CLIP)。
  3. 轻量化:模型压缩与部署(如MobileNet、知识蒸馏)。

http://www.ppmy.cn/news/1580634.html

相关文章

软件安全性测试的重要性和常用工具介绍,软件测试服务公司推荐

在当今数字化快速发展的时代,软件已经成为各行各业不可或缺的一部分。然而,随着软件系统的复杂性增加,安全性问题也愈发突出,因此软件产品生产周期中安全测试必不可少。软件安全性测试是指对软件系统进行评估,以发现潜…

领略算法真谛:01背包问题

嘿,各位技术潮人!好久不见甚是想念。生活就像一场奇妙冒险,而编程就是那把超酷的万能钥匙。此刻,阳光洒在键盘上,灵感在指尖跳跃,让我们抛开一切束缚,给平淡日子加点料,注入满满的pa…

docker overlay2 文件夹比较大怎么处理

overlay2 是 Docker 默认的存储驱动,用于管理容器和镜像的存储。当 overlay2 文件夹变得非常大时,通常是由于以下原因: 未清理的镜像和容器:未使用的镜像、停止的容器、悬空的卷等占用了大量空间。日志文件过大:容器生…

STM32原理性知识

文章目录 1、如何在STM32 实现原子操作 2、寄存器是什么?为什么向外设地址写值可以控制外设的状态? 1、如何在STM32 实现原子操作 在CMSIS模块中已经提供了原子操作宏,用于操作16位或32位变量,包括ATOMIC_SET_BIT、ATOMIC_CLEAR_…

C++ 语法之函数和函数指针

在上一章中 C 语法之 指针的一些应用说明-CSDN博客 我们了解了指针变量&#xff0c;int *p;取变量a的地址这些。 那么函数同样也有个地址&#xff0c;直接输出函数名就可以得到地址&#xff0c;如下&#xff1a; #include<iostream> using namespace std; void fun() …

程序化广告行业(30/89):利用“4W1H”模型优化广告投放策略

程序化广告行业&#xff08;30/89&#xff09;&#xff1a;利用“4W1H”模型优化广告投放策略 在数字化营销的浪潮中&#xff0c;程序化广告已经成为企业精准触达目标客户的有力武器。一直以来&#xff0c;我都希望和大家一起探索技术领域&#xff0c;共同学习进步&#xff0c…

全局上下文网络GCNet:创新架构提升视觉识别性能

摘要&#xff1a;本文介绍了全局上下文网络&#xff08;GCNet&#xff09;&#xff0c;通过深入分析非局部网络&#xff08;NLNet&#xff09;&#xff0c;发现其在重要视觉识别任务中学习的全局上下文与查询位置无关。基于此&#xff0c;提出简化的非局部模块、全局上下文建模…

c++类和对象(下篇)下

下面就来补充一下c雷和对象最后一点内容. 首先先补充一下上一篇博客上c类和对象(下篇)上-CSDN博客最后学习的静态成员变量的小练习求123...n_牛客题霸_牛客网 (nowcoder.com)下面就是题解.灵活的运用了静态成员变量不销毁的特点,建立数组利用构造函数来完成n次相加. class A{ …