深度学习 Deep Learning 第1章 深度学习简介

news/2025/3/18 19:45:47/

第1章 深度学习简介

概述

本章介绍人工智能(AI)和深度学习领域,讨论其历史发展、关键概念和应用。解释深度学习如何从早期的AI和机器学习方法演变而来,以及如何有效解决之前方法无法应对的挑战。

在这里插入图片描述

关键概念

1. 人工智能的演变

  • 历史背景:创造会思考的机器的梦想可以追溯到古希腊,当时的神话人物如皮格马利翁和赫菲斯托斯代表了早期对人工生命的构想。
  • 早期人工智能:专注于人类认为智力上困难但对具有正式规则的计算机来说相对简单的问题(例如国际象棋)。
  • 向机器学习的转变:应对解决对人类来说容易但难以形式化的问题的挑战,如语音识别和图像理解。

2. 机器学习与表示学习

  • 机器学习:使计算机能够从经验中学习,而不是依赖预先编写的知识。
  • 表示学习:专注于从原始数据中发现有用的特征。深度学习是一种表示学习形式,通过构建越来越复杂的层次结构来表示数据。

3. 深度学习基础

  • 层次化表示深度学习模型通过组合简单的表示来构建复杂的表示,从而能够捕捉高层次的抽象。
  • 多层感知机(MLPs):一种基本的深度学习模型,使用多层处理将输入数据转换为有用的输出。
  • 与其他人工智能方法的关系:将深度学习定位在更广泛的AI背景中,展示它如何建立在符号AI和传统机器学习的基础上并与其不同。

深度学习的历史趋势

  • 三次发展浪潮
    1. 控制论(20世纪40年代至60年代):早期模型如McCulloch-Pitts神经元和感知器。
    2. 联结主义(20世纪80年代至90年代):引入反向传播和分布式表示。
    3. 现代深度学习(2006年至今):在训练深度架构和大规模数据集可用性方面取得突破。
  • 数据集规模:大规模数据集的可用性对于训练有效的深度学习模型至关重要。
  • 模型规模:计算资源的进步使得开发越来越大和复杂的模型成为可能。
  • 应用深度学习在多个领域取得了显著成功,包括图像识别、语音识别、自然语言处理和机器人技术。

书籍结构和受众

  • 目标读者:学习机器学习的大学生(本科或研究生),以及希望实施深度学习的软件工程师。
  • 书籍结构:分为三部分,涵盖数学基础、已建立的深度学习算法和研究导向主题。

结论

深度学习人工智能领域的一项重大进展,借鉴了神经科学、统计学和应用数学的见解。其发展得益于更强大的计算机、更大的数据集以及训练更深层网络的技术。该领域不断发展,正在进行的研究探索新的架构和应用。

精彩语句

  1. 大脑的存在证明了智能行为的可能性,通过逆向工程大脑的计算原理并复制其功能,是一条概念上直接的构建智能的路径。

    “The brain provides a proof by example that intelligent behavior is possible, and a conceptually straightforward path to building intelligence is to reverse engineer the computational principles behind the brain and duplicate its functionality.”

    解释: 这句话强调了大脑作为智能存在的范例,以及通过研究大脑工作原理来构建人工智能的直接性。

  2. 随着时间的推移,深度学习在越来越复杂的应用中取得了越来越高的准确性。

    “Deep learning has solved increasingly complicated applications with increasing accuracy over time.”

    解释: 这句话描述了深度学习在处理复杂任务时的持续进步和不断提高的准确性。

  3. 深度学习领域主要关注如何构建能够成功解决需要智能的任务的计算机系统,而计算神经科学领域主要关注构建更准确的大脑工作模型。

    “The field of deep learning is primarily concerned with how to build computer systems that are able to successfully solve tasks requiring intelligence, while the field of computational neuroscience is primarily concerned with building more accurate models of how the brain actually works.”

    解释: 这句话明确了深度学习和计算神经科学的研究重点,突出了两者在目标上的区别。

  4. 最重要的新发展是,如今我们可以为这些算法提供它们成功所需的资源。

    “The most important new development is that today we can provide these algorithms with the resources they need to succeed.”

    解释: 这句话指出了当前深度学习成功的关键因素——资源的可用性。

  5. 这种自我编程技术仍处于起步阶段,但未来原则上可以应用于几乎所有任务。

    “This self-programming technology is in its infancy, but in the future could in principle be applied to nearly any task.”

    解释: 这句话展望了深度学习技术的未来潜力,强调了其广泛的应用前景。


http://www.ppmy.cn/news/1580144.html

相关文章

【最佳实践】Go 状态模式

设计思路 状态模式的核心在于将对象的行为封装在特定的状态类中,使得对象在不同的状态下表现出不同的行为。每个状态实现同一个接口,允许对象在运行时通过改变其内部状态对象来改变其行为。状态模式使得状态转换更加明确,并且易于扩展新的状…

coding ability 展开第四幕(滑动指针——巩固篇)超详细!!!!

文章目录 前言水果成篮思路 找到字符串中所有字母异位词思路 串联所有单词的子串思路 最小覆盖子串思路 总结 前言 本专栏上一篇博客,带着大家从认识滑动窗口到慢慢熟悉 相信大家对滑动窗口已经有了大概的认识 其实主要就是抓住——一段连续的区间 今天来学习一些滑…

GaussDB备份数据常用命令

1、常用备份命令gs_dump 说明:是一个服务器端工具,可以在线导出数据库的数据,这些数据包含整个数据库或数据库中指定的对象(如:模式,表,视图等),并且支持导出完整一致的数…

物联网(IoT)平台层中 大数据处理过程

在物联网(IoT)平台层中,大数据处理是一个核心环节,它负责对海量设备数据进行采集、存储、处理和分析,以提取有价值的信息并支持上层应用。以下是物联网平台层中大数据处理的技术实现、架构设计和解决方案。 大数据处理的主要流程 物联网中的大数据处理通常包括以下几个阶…

LeetCode 1005. K 次取反后最大化的数组和 java题解

https://leetcode.cn/problems/maximize-sum-of-array-after-k-negations/description/ 看着简单但是写si人的一题。 class Solution {public int largestSumAfterKNegations(int[] nums, int k) {Arrays.sort(nums);//排序int last_negative-1,first_positive-1;//最后一个负…

单元测试、注解

目录 一、单元测试1.快速入门2.Junit在实际开发中的用法 二、注解1.注解概述2.自定义注解3.元注解4.解析注解 一、单元测试 单元测试就是针对最小的功能单元编写测试代码,Java程序最小的功能单元是方法。因此,单元测试就是针对Java方法的测试&#xff0…

泰山派开发之—Ubuntu24.04下Linux开发环境搭建

简介 最近翻到了吃灰已久的泰山派,是刚出来的时候用优惠券买的,当时价格挺便宜的,最近给它翻出来了,打算试试做个项目。买的泰山派容量是2G16G,SOC芯片使用的是RK3566,搭载1TOP算力的NPU,并且具…