LeetCode hot 100—二叉树的中序遍历

news/2025/3/10 5:58:29/

题目

给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。

示例

示例 1:

输入:root = [1,null,2,3]
输出:[1,3,2]

示例 2:

输入:root = []
输出:[]

示例 3:

输入:root = [1]
输出:[1]

分析

二叉树的中序遍历顺序是:先遍历左子树,然后访问根节点,最后遍历右子树。

递归法

递归是实现二叉树中序遍历最简单的方法,其基本思想是根据中序遍历的定义,递归地处理左子树、根节点和右子树。

时间复杂度:O(n), n 为二叉树节点的个数

空间复杂度:O(n),递归调用栈的空间,最坏情况下二叉树退化为链表,递归深度为 n

class Solution {
public:vector<int> inorderTraversal(TreeNode* root) {vector<int> result;inorder(root, result);return result;}
private:void inorder(TreeNode* node, vector<int>& result) {if (node == nullptr) {return;}// 递归遍历左子树inorder(node->left, result);// 访问根节点result.push_back(node->val);// 递归遍历右子树inorder(node->right, result);}
};

迭代法

迭代实现通常使用栈来模拟递归调用的过程。具体步骤如下:

  • 从根节点开始,将左子树的节点依次压入栈中,直到左子树为空
  • 弹出栈顶节点,访问该节点的值
  • 处理该节点的右子树,重复步骤 1 和 2

时间复杂度:O(n), n 为二叉树节点的个数

空间复杂度:O(n),递归调用栈的空间,最坏情况下二叉树退化为链表,递归深度为 n

class Solution {
public:vector<int> inorderTraversal(TreeNode* root) {vector<int> result;stack<TreeNode*> nodeStack;TreeNode* current = root;while (current != nullptr || !nodeStack.empty()) {// 将左子树的节点依次压入栈中while (current != nullptr) {nodeStack.push(current);current = current->left;}// 弹出栈顶节点并访问current = nodeStack.top();nodeStack.pop();result.push_back(current->val);// 处理右子树current = current->right;}return result;}
};

知识充电

二叉树性质

若规定根节点的层数为 1,则一棵非空二叉树的第 i 层上最多有 2^{i-1} 个节点

若规定根节点的层数为 1,则深度为 h 的二叉树的最大节点数是 2^{h}-1

对任何一棵二叉树,如果其叶节点个数为 n_{0},度为 2 的非叶节点个数为 n_{2},则有 n_{0}=n_{2}+1

常见操作

初始化

#include <iostream>
#include <vector>
#include <stack>// 二叉树节点定义
struct TreeNode {int val;TreeNode* left;TreeNode* right;TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};

插入节点

// 插入节点(以二叉搜索树为例)
TreeNode* insertNode(TreeNode* root, int val) {if (root == nullptr) {return new TreeNode(val);}if (val < root->val) {root->left = insertNode(root->left, val);} else {root->right = insertNode(root->right, val);}return root;
}
int main() {TreeNode* root = nullptr;root = insertNode(root, 50);insertNode(root, 30);insertNode(root, 20);insertNode(root, 40);insertNode(root, 70);insertNode(root, 60);insertNode(root, 80);return 0;
}

查找节点

// 查找节点(以二叉搜索树为例)
TreeNode* searchNode(TreeNode* root, int val) {if (root == nullptr || root->val == val) {return root;}if (val < root->val) {return searchNode(root->left, val);} else {return searchNode(root->right, val);}
}
// 辅助函数:插入节点
TreeNode* insertNode(TreeNode* root, int val) {if (root == nullptr) {return new TreeNode(val);}if (val < root->val) {root->left = insertNode(root->left, val);} else {root->right = insertNode(root->right, val);}return root;
}
int main() {TreeNode* root = nullptr;root = insertNode(root, 50);insertNode(root, 30);insertNode(root, 20);insertNode(root, 40);insertNode(root, 70);insertNode(root, 60);insertNode(root, 80);TreeNode* found = searchNode(root, 40);if (found) {std::cout << "Found node with value: " << found->val << std::endl;} else {std::cout << "Node not found." << std::endl;}return 0;
}

删除节点

// 找到右子树中的最小节点
TreeNode* findMin(TreeNode* node) {while (node->left != nullptr) {node = node->left;}return node;
}
// 删除节点(以二叉搜索树为例)
TreeNode* deleteNode(TreeNode* root, int val) {if (root == nullptr) {return root;}if (val < root->val) {root->left = deleteNode(root->left, val);} else if (val > root->val) {root->right = deleteNode(root->right, val);} else {// 情况 1: 没有子节点或只有一个子节点if (root->left == nullptr) {TreeNode* temp = root->right;delete root;return temp;} else if (root->right == nullptr) {TreeNode* temp = root->left;delete root;return temp;}// 情况 2: 有两个子节点TreeNode* temp = findMin(root->right);root->val = temp->val;root->right = deleteNode(root->right, temp->val);}return root;
}
// 辅助函数:插入节点
TreeNode* insertNode(TreeNode* root, int val) {if (root == nullptr) {return new TreeNode(val);}if (val < root->val) {root->left = insertNode(root->left, val);} else {root->right = insertNode(root->right, val);}return root;
}
int main() {TreeNode* root = nullptr;root = insertNode(root, 50);insertNode(root, 30);insertNode(root, 20);insertNode(root, 40);insertNode(root, 70);insertNode(root, 60);insertNode(root, 80);root = deleteNode(root, 30);return 0;
}

前序遍历

// 前序遍历(递归)
std::vector<int> preorderTraversalRecursive(TreeNode* root) {std::vector<int> result;if (root == nullptr) return result;result.push_back(root->val);auto leftResult = preorderTraversalRecursive(root->left);result.insert(result.end(), leftResult.begin(), leftResult.end());auto rightResult = preorderTraversalRecursive(root->right);result.insert(result.end(), rightResult.begin(), rightResult.end());return result;
}
int main() {TreeNode* root = new TreeNode(1);root->right = new TreeNode(2);root->right->left = new TreeNode(3);std::vector<int> preorderRecursive = preorderTraversalRecursive(root);return 0;
}

中序遍历

// 中序遍历(递归)
std::vector<int> inorderTraversalRecursive(TreeNode* root) {std::vector<int> result;if (root == nullptr) return result;auto leftResult = inorderTraversalRecursive(root->left);result.insert(result.end(), leftResult.begin(), leftResult.end());result.push_back(root->val);auto rightResult = inorderTraversalRecursive(root->right);result.insert(result.end(), rightResult.begin(), rightResult.end());return result;
}
int main() {TreeNode* root = new TreeNode(1);root->right = new TreeNode(2);root->right->left = new TreeNode(3);std::vector<int> inorderRecursive = inorderTraversalRecursive(root);return 0;
}

后序遍历

// 后序遍历(递归)
std::vector<int> postorderTraversalRecursive(TreeNode* root) {std::vector<int> result;if (root == nullptr) return result;auto leftResult = postorderTraversalRecursive(root->left);result.insert(result.end(), leftResult.begin(), leftResult.end());auto rightResult = postorderTraversalRecursive(root->right);result.insert(result.end(), rightResult.begin(), rightResult.end());result.push_back(root->val);return result;
}
int main() {TreeNode* root = new TreeNode(1);root->right = new TreeNode(2);root->right->left = new TreeNode(3);std::vector<int> postorderRecursive = postorderTraversalRecursive(root);return 0;
}

http://www.ppmy.cn/news/1578005.html

相关文章

工具介绍《githack》以及Git 命令行

一、Githack 工具介绍 Githack 是一个用于检测和利用网站 .git 目录泄露漏洞的安全工具。当网站错误配置导致 .git 目录可公开访问时&#xff0c;攻击者可通过该工具下载 .git 中的版本控制文件&#xff0c;并重建完整的项目源代码。 核心用途 检测 .git 目录泄露漏洞。从泄…

基于Python+Vue的智能服装商城管理系统的设计与实现

&#x1f457; 基于PythonVue的智能服装商城管理系统的设计与实现 电商级解决方案&#xff1a;全栈技术融合 智能推荐系统 多维度数据分析 项目亮点&#xff1a;课程设计优选 | 企业级架构规范 | 完整电商功能闭环 | 毕业设计选择 &#x1f310; 在线资源速览 类别地址访问方…

静态网页的爬虫(以电影天堂为例)

一、电影天堂的网址&#xff08;url&#xff09; 电影天堂_免费电影_迅雷电影下载_电影天堂网最好的迅雷电影下载网&#xff0c;分享最新电影&#xff0c;高清电影、综艺、动漫、电视剧等下载&#xff01;https://dydytt.net/index.htm 我们要爬取这个页面上的内容 二、代码…

Element Plus中的树组件的具体用法(持续更新!)

const defaultProps {//子树为节点对象的childrenchildren: children,//节点标签为节点对象的name属性label: name, } 属性 以下是树组件中的常用属性以及作用&#xff1a; data&#xff1a;展示的数据&#xff08;数据源&#xff09; show-checkbox&#xff1a;节点是否可…

DeepSeek开源Day1:FlashMLA技术详解

2 月 24 日&#xff0c;DeepSeek 启动 “开源周”&#xff0c;首个开源的代码库为 FlashMLA。DeepSeek 这种挤牙膏式的宣推手段也是很有意思&#xff0c;看来梁文锋团队不仅仅是技术派&#xff0c;也擅长玩技术流量 IP。 1. FlashMLA 简介 FlashMLA 是由 depseek-ai &#xf…

swift-5-汇编分析闭包本质

一、枚举、结构体、类都定义方法 方法占用对象的内存么&#xff1f; 不占用 方法的本质就是函数 方法、函数都存放在代码段&#xff0c;因为方法都是公共的&#xff0c;不管 对象一还是对对象二调用都是一样的&#xff0c;所以放在代码段&#xff0c;但是每个对象的成员不一样所…

DeepSeek开源Day2:DeepEP技术详解

2 月 24 日&#xff0c;DeepSeek 启动 “开源周”&#xff0c;第二个开源的代码库为 DeepEP。很好&#xff0c;又挤了一段有硬件基因的牙膏出来。H100/H800 绝对是 DeepSeek 的小心肝。 1 DeepEP 简介 DeepEP 是由 deepseek-ai &#xff08;深度求索&#xff09;开发的一个开源…

Go语言中位清除运算符的应用场景

package mainimport "fmt"func main() {a : 5 //101b : 1 //001//100 -> 4fmt.Println(a, b)//位清除 当b为0的时候取a的值&#xff0c;当b为1的时候取0fmt.Println(a &^ b) }《Go语言圣经》里面有对此的描述&#xff0c;x a &^ b&#xff0c;当b为…