题目
给定一个二叉树的根节点 root
,返回 它的 中序 遍历 。
示例
示例 1:
输入:root = [1,null,2,3] 输出:[1,3,2]示例 2:
输入:root = [] 输出:[]示例 3:
输入:root = [1] 输出:[1]
分析
二叉树的中序遍历顺序是:先遍历左子树,然后访问根节点,最后遍历右子树。
递归法
递归是实现二叉树中序遍历最简单的方法,其基本思想是根据中序遍历的定义,递归地处理左子树、根节点和右子树。
时间复杂度:O(),
为二叉树节点的个数
空间复杂度:O(),递归调用栈的空间,最坏情况下二叉树退化为链表,递归深度为
class Solution {
public:vector<int> inorderTraversal(TreeNode* root) {vector<int> result;inorder(root, result);return result;}
private:void inorder(TreeNode* node, vector<int>& result) {if (node == nullptr) {return;}// 递归遍历左子树inorder(node->left, result);// 访问根节点result.push_back(node->val);// 递归遍历右子树inorder(node->right, result);}
};
迭代法
迭代实现通常使用栈来模拟递归调用的过程。具体步骤如下:
- 从根节点开始,将左子树的节点依次压入栈中,直到左子树为空
- 弹出栈顶节点,访问该节点的值
- 处理该节点的右子树,重复步骤 1 和 2
时间复杂度:O(),
为二叉树节点的个数
空间复杂度:O(),递归调用栈的空间,最坏情况下二叉树退化为链表,递归深度为
class Solution {
public:vector<int> inorderTraversal(TreeNode* root) {vector<int> result;stack<TreeNode*> nodeStack;TreeNode* current = root;while (current != nullptr || !nodeStack.empty()) {// 将左子树的节点依次压入栈中while (current != nullptr) {nodeStack.push(current);current = current->left;}// 弹出栈顶节点并访问current = nodeStack.top();nodeStack.pop();result.push_back(current->val);// 处理右子树current = current->right;}return result;}
};
知识充电
二叉树性质
若规定根节点的层数为 1,则一棵非空二叉树的第 i 层上最多有 个节点
若规定根节点的层数为 1,则深度为 h 的二叉树的最大节点数是
对任何一棵二叉树,如果其叶节点个数为 ,度为 2 的非叶节点个数为
,则有
常见操作
初始化
#include <iostream>
#include <vector>
#include <stack>// 二叉树节点定义
struct TreeNode {int val;TreeNode* left;TreeNode* right;TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};
插入节点
// 插入节点(以二叉搜索树为例)
TreeNode* insertNode(TreeNode* root, int val) {if (root == nullptr) {return new TreeNode(val);}if (val < root->val) {root->left = insertNode(root->left, val);} else {root->right = insertNode(root->right, val);}return root;
}
int main() {TreeNode* root = nullptr;root = insertNode(root, 50);insertNode(root, 30);insertNode(root, 20);insertNode(root, 40);insertNode(root, 70);insertNode(root, 60);insertNode(root, 80);return 0;
}
查找节点
// 查找节点(以二叉搜索树为例)
TreeNode* searchNode(TreeNode* root, int val) {if (root == nullptr || root->val == val) {return root;}if (val < root->val) {return searchNode(root->left, val);} else {return searchNode(root->right, val);}
}
// 辅助函数:插入节点
TreeNode* insertNode(TreeNode* root, int val) {if (root == nullptr) {return new TreeNode(val);}if (val < root->val) {root->left = insertNode(root->left, val);} else {root->right = insertNode(root->right, val);}return root;
}
int main() {TreeNode* root = nullptr;root = insertNode(root, 50);insertNode(root, 30);insertNode(root, 20);insertNode(root, 40);insertNode(root, 70);insertNode(root, 60);insertNode(root, 80);TreeNode* found = searchNode(root, 40);if (found) {std::cout << "Found node with value: " << found->val << std::endl;} else {std::cout << "Node not found." << std::endl;}return 0;
}
删除节点
// 找到右子树中的最小节点
TreeNode* findMin(TreeNode* node) {while (node->left != nullptr) {node = node->left;}return node;
}
// 删除节点(以二叉搜索树为例)
TreeNode* deleteNode(TreeNode* root, int val) {if (root == nullptr) {return root;}if (val < root->val) {root->left = deleteNode(root->left, val);} else if (val > root->val) {root->right = deleteNode(root->right, val);} else {// 情况 1: 没有子节点或只有一个子节点if (root->left == nullptr) {TreeNode* temp = root->right;delete root;return temp;} else if (root->right == nullptr) {TreeNode* temp = root->left;delete root;return temp;}// 情况 2: 有两个子节点TreeNode* temp = findMin(root->right);root->val = temp->val;root->right = deleteNode(root->right, temp->val);}return root;
}
// 辅助函数:插入节点
TreeNode* insertNode(TreeNode* root, int val) {if (root == nullptr) {return new TreeNode(val);}if (val < root->val) {root->left = insertNode(root->left, val);} else {root->right = insertNode(root->right, val);}return root;
}
int main() {TreeNode* root = nullptr;root = insertNode(root, 50);insertNode(root, 30);insertNode(root, 20);insertNode(root, 40);insertNode(root, 70);insertNode(root, 60);insertNode(root, 80);root = deleteNode(root, 30);return 0;
}
前序遍历
// 前序遍历(递归)
std::vector<int> preorderTraversalRecursive(TreeNode* root) {std::vector<int> result;if (root == nullptr) return result;result.push_back(root->val);auto leftResult = preorderTraversalRecursive(root->left);result.insert(result.end(), leftResult.begin(), leftResult.end());auto rightResult = preorderTraversalRecursive(root->right);result.insert(result.end(), rightResult.begin(), rightResult.end());return result;
}
int main() {TreeNode* root = new TreeNode(1);root->right = new TreeNode(2);root->right->left = new TreeNode(3);std::vector<int> preorderRecursive = preorderTraversalRecursive(root);return 0;
}
中序遍历
// 中序遍历(递归)
std::vector<int> inorderTraversalRecursive(TreeNode* root) {std::vector<int> result;if (root == nullptr) return result;auto leftResult = inorderTraversalRecursive(root->left);result.insert(result.end(), leftResult.begin(), leftResult.end());result.push_back(root->val);auto rightResult = inorderTraversalRecursive(root->right);result.insert(result.end(), rightResult.begin(), rightResult.end());return result;
}
int main() {TreeNode* root = new TreeNode(1);root->right = new TreeNode(2);root->right->left = new TreeNode(3);std::vector<int> inorderRecursive = inorderTraversalRecursive(root);return 0;
}
后序遍历
// 后序遍历(递归)
std::vector<int> postorderTraversalRecursive(TreeNode* root) {std::vector<int> result;if (root == nullptr) return result;auto leftResult = postorderTraversalRecursive(root->left);result.insert(result.end(), leftResult.begin(), leftResult.end());auto rightResult = postorderTraversalRecursive(root->right);result.insert(result.end(), rightResult.begin(), rightResult.end());result.push_back(root->val);return result;
}
int main() {TreeNode* root = new TreeNode(1);root->right = new TreeNode(2);root->right->left = new TreeNode(3);std::vector<int> postorderRecursive = postorderTraversalRecursive(root);return 0;
}