【C++设计模式】第四篇:建造者模式(Builder)

news/2025/3/6 4:36:11/

注意:复现代码时,确保 VS2022 使用 C++17/20 标准以支持现代特性。

分步骤构造复杂对象,实现灵活装配


1. 模式定义与用途

核心目标:将复杂对象的构建过程分离,使得同样的构建步骤可以创建不同的表示形式。
常见场景

  • 创建包含多个组件的复杂对象(如游戏角色、文档格式)
  • 需要逐步构造对象,并支持不同配置选项
  • 避免构造函数参数爆炸(尤其是可选参数众多时)

2. 模式结构解析

在这里插入图片描述

  • Builder:定义构造步骤的抽象接口(如 buildHead(), buildBody()
  • ConcreteBuilder:实现具体构造逻辑,提供获取结果的接口
  • Director:控制构造流程(可选,可让客户端直接操作Builder)
  • Product:最终构造的复杂对象

3. 现代 C++ 实现示例:游戏角色构造

3.1 基础实现

#include <iostream>
#include <memory>
#include <string>// 产品:游戏角色
class GameCharacter {
public:void setHead(const std::string& head) { head_ = head; }void setBody(const std::string& body) { body_ = body; }void setWeapon(const std::string& weapon) { weapon_ = weapon; }void describe() const {std::cout << "Character: " << head_ << ", " << body_ << ", wielding " << weapon_ << "\n";}private:std::string head_;std::string body_;std::string weapon_;
};// 抽象建造者
class CharacterBuilder {
public:virtual ~CharacterBuilder() = default;virtual void buildHead() = 0;virtual void buildBody() = 0;virtual void buildWeapon() = 0;virtual std::unique_ptr<GameCharacter> getResult() = 0;
};// 具体建造者:骑士
class KnightBuilder : public CharacterBuilder {
public:KnightBuilder() { character_ = std::make_unique<GameCharacter>(); }void buildHead() override { character_->setHead("Steel Helmet"); }void buildBody() override { character_->setBody("Plate Armor"); }void buildWeapon() override { character_->setWeapon("Longsword"); }std::unique_ptr<GameCharacter> getResult() override { return std::move(character_); }private:std::unique_ptr<GameCharacter> character_;
};// 具体建造者:法师
class MageBuilder : public CharacterBuilder {
public:MageBuilder() { character_ = std::make_unique<GameCharacter>(); }void buildHead() override { character_->setHead("Pointed Hat"); }void buildBody() override { character_->setBody("Robe"); }void buildWeapon() override { character_->setWeapon("Staff"); }std::unique_ptr<GameCharacter> getResult() override { return std::move(character_); }private:std::unique_ptr<GameCharacter> character_;
};// 指挥者(可选)
class CharacterDirector {
public:std::unique_ptr<GameCharacter> createCharacter(CharacterBuilder& builder) {builder.buildHead();builder.buildBody();builder.buildWeapon();return builder.getResult();}
};// 客户端代码
int main() {KnightBuilder knightBuilder;MageBuilder mageBuilder;CharacterDirector director;auto knight = director.createCharacter(knightBuilder);auto mage = director.createCharacter(mageBuilder);knight->describe(); // Character: Steel Helmet, Plate Armor, wielding Longswordmage->describe();   // Character: Pointed Hat, Robe, wielding Staffreturn 0;
}

代码解析:

  • 将角色构造分解为独立步骤,新增角色类型只需添加新的 ConcreteBuilder
  • 使用 std::unique_ptr 明确所有权转移,防止资源泄漏

3.2 支持链式调用的增强实现

// 流畅接口(Fluent Interface)改进
class AdvancedCharacterBuilder {
public:AdvancedCharacterBuilder& withHead(const std::string& head) {head_ = head;return *this;}AdvancedCharacterBuilder& withBody(const std::string& body) {body_ = body;return *this;}AdvancedCharacterBuilder& withWeapon(const std::string& weapon) {weapon_ = weapon;return *this;}std::unique_ptr<GameCharacter> build() {auto character = std::make_unique<GameCharacter>();character->setHead(head_);character->setBody(body_);character->setWeapon(weapon_);return character;}private:std::string head_;std::string body_;std::string weapon_;
};// 客户端使用
void createCustomCharacter() {auto builder = AdvancedCharacterBuilder();auto character = builder.withHead("Hood").withBody("Leather Armor").withWeapon("Dagger").build();character->describe();
}

代码解析

  • 通过返回 this 指针实现链式调用,提升代码可读性
  • 支持可选参数和任意顺序设置属性

4. 应用场景示例:HTTP请求构造

class HttpRequest {
public:void setMethod(const std::string& method) { method_ = method; }void setUrl(const std::string& url) { url_ = url; }void addHeader(const std::string& key, const std::string& value) {headers_[key] = value;}void setBody(const std::string& body) { body_ = body; }void send() const {std::cout << "Sending " << method_ << " " << url_ << " with body: " << body_ << "\n";}private:std::string method_;std::string url_;std::map<std::string, std::string> headers_;std::string body_;
};class HttpRequestBuilder {
public:HttpRequestBuilder() : request_(std::make_unique<HttpRequest>()) {}HttpRequestBuilder& method(const std::string& method) {request_->setMethod(method);return *this;}HttpRequestBuilder& url(const std::string& url) {request_->setUrl(url);return *this;}HttpRequestBuilder& header(const std::string& key, const std::string& value) {request_->addHeader(key, value);return *this;}HttpRequestBuilder& body(const std::string& body) {request_->setBody(body);return *this;}std::unique_ptr<HttpRequest> build() {return std::move(request_);}private:std::unique_ptr<HttpRequest> request_;
};// 使用示例
void sendPostRequest() {auto request = HttpRequestBuilder().method("POST").url("https://api.example.com/data").header("Content-Type", "application/json").body(R"({"key": "value"})").build();request->send();
}

5. 优缺点分析

优点缺点
分步骤构造复杂对象,代码清晰需定义多个Builder类,增加代码量
支持不同配置和构造顺序对简单对象可能过度设计
隔离复杂构造逻辑与业务代码需维护Builder与Product的同步

6. 调试与优化策略

  • 参数验证:在Builder方法中添加有效性检查,防止非法状态
  • 对象复用:对频繁创建的对象,实现reset()方法重用Builder实例
  • 性能分析:使用std::move优化字符串等大型数据成员的传递效率

模式结构解析网图备份

在这里插入图片描述


http://www.ppmy.cn/news/1576981.html

相关文章

Rust Async 并发编程:任务、消息传递与 `join`

1. 创建异步任务 在传统的多线程模型中&#xff0c;我们使用 std::thread::spawn 来创建新的线程。而在 async 模型中&#xff0c;使用 spawn_task 代替 thread::spawn 来创建异步任务&#xff0c;并结合 await 关键字来处理异步操作。 示例&#xff1a;使用 spawn_task 进行…

Python在NFT市场中的应用:从创建到交易的完整指南

Python在NFT市场中的应用&#xff1a;从创建到交易的完整指南 大家好&#xff0c;我是Echo_Wish。今天我们来聊聊一个近年来备受关注的话题——NFT&#xff08;非同质化代币&#xff09;。NFT的出现不仅为数字艺术家和收藏家带来了全新的机会&#xff0c;也为开发者提供了一个…

MySQL之 NoneType object has no attribute cursor

查下MySQL报错日志 首先&#xff0c;看下日志文件所在位置 SHOW GLOBAL VARIABLES LIKE log_error;然后查看日志文件中当时的报错信息 发现这样的日志&#xff1a; Aborted connection … to db … Got timeout reading communication packets初步猜测是&#xff0c;数据库…

从零搭建Tomcat:深入理解Java Web服务器的工作原理

Tomcat是Java生态中最常用的Web服务器之一&#xff0c;广泛应用于Java Web应用的部署和运行。本文将带你从零开始搭建一个简易的Tomcat服务器&#xff0c;深入理解其工作原理&#xff0c;并通过代码实现一个基本的Servlet容器。 1. Tomcat的基本概念 Tomcat是一个开源的Servl…

美丽的2024【算法赛】

1.美丽的2024【算法赛】 - 蓝桥云课 问题描述 小蓝刚学习完二进制知识&#xff0c;所以现在他对任何数字的二进制都特别感兴趣。恰好即将迎来2024年&#xff0c;他想知道2024的二进制中有几个1&#xff1f;请你帮忙解决这个问题。 输入格式 本题为填空题&#xff0c;无输入…

三维数据可视化与表面重建:Marching Cubes算法的原理与应用

1. 引言 随着现代医学影像技术的飞速发展&#xff0c;三维数据的可视化与重建已成为医学研究、临床诊断和手术规划的重要工具。在众多三维重建算法中&#xff0c;Marching Cubes算法因其高效、稳定的特性成为从离散数据场中提取等值面的经典方法。本报告将深入探讨Marching Cu…

PyTorch 的 nn.NLLLoss:负对数似然损失全解析

PyTorch 的 nn.NLLLoss&#xff1a;负对数似然损失全解析 在 PyTorch 的损失函数家族中&#xff0c;nn.NLLLoss&#xff08;Negative Log Likelihood Loss&#xff0c;负对数似然损失&#xff09;是一个不太起眼但非常重要的成员。它经常跟 LogSoftmax 搭配出现&#xff0c;尤…

读写分离架构下的一致性挑战

读写分离架构下的一致性挑战 什么是读写分离架构读写分离架构的一致性挑战主从复制延迟事务不一致 主从切换导致的数据丢失跨表/跨库操作的一致性问题缓存与数据库的一致性问题查询路由策略不当导致的问题全局二级索引的一致性问题历史查询与实时数据的一致性分布式锁与读写分离…