简单易懂,解析Go语言中的struct结构体

news/2025/3/1 2:02:58/

目录

  • 4. struct 结构体
    • 4.1 初始化
    • 4.2 内嵌字段
    • 4.3 可见性
    • 4.4 方法与函数
      • 4.4.1 区别
      • 4.4.2 闭包
    • 4.5 Tag 字段标签
      • 4.5.1定义
      • 4.5.2 Tag规范
      • 4.5.3 Tag意义

4. struct 结构体

go的结构体类似于其他语言中的class,主要区别就是go的结构体没有继承这一概念,但可以使用类型嵌入来实现相似功能。

4.1 初始化

使用type关键字来定义一个新的类型,struct将新类型限定为结构体类型。

结构体中的字段可以为任何类型,但是包含一些特殊类型 如:接口,管道,函数,指针的时候要格外注意

go">//type定义一个新类型
type newInt int//type定义一个简单的结构体
type base struct{value int   
}//type定义一个复杂的结构体
type student struct {Name stringage  intc    interface{}d    func() inte    func()base     //将base类型嵌入到了student类型中
}

4.2 内嵌字段

内嵌字段大体上有两种方式:显式指定(m1)和隐式指定(m2)

  • 显式指定就相当于把目标结构体当作字段,调用时需要先调用这个字段,在调用目标结构体中的信息
  • 隐式指定相当于把目标结构体中的所有字段都在新结构体中创建了一次,并且指向嵌入结构体内部。同时创建同名嵌入结构体对象[指与base同名]
  • 显式创建同名结构体字段 ≠ 隐式指定
go">type base struct {Value int
}
//显式指定
type m1 struct {b base
}//隐式指定
type m2 struct {base
}//显式指定同名字段
type m3 struct {base base
}

对上述结构体进行调用:

  • 只有隐式指定直接操作被嵌入结构体内的数据;
  • 隐式指定后,直接操作嵌入结构体中的数据和通同名结构体操作作用一样
go">func main() {a1 := m1{}a2 := m2{}a3 := m3{}//显式指定只能通过嵌入结构体进行操作// a1.Value = 1 //a1.Value undefined (type m2 has no field or method Value)a1.b.Value = 2//隐式指定两种操作数据方法操作的是同一个变量a2.Value = 2a2.base.Value = 3fmt.Println(a2.Value) //3//显式指定同名变量 ≠ 隐式指定 // a3.Value = 3 //a3.Value undefined (type m3 has no field or method Value)a3.base.Value = 4
}

当内嵌字段中的字段与结构体中得字段同名时:

  • 直接调用时是指定当前结构体中显式定义的字段,但嵌入结构体中的字段仍可通过嵌入类型进行调用
  • 方法同理
go">//数据
func main() {a1 := m1{}a1.Value = "hello world"a1.base.Value = 1fmt.Println(a1)//获取a1中的所有字段类型t := reflect.TypeOf(a1)for i := 0; i < t.NumField(); i++ {field := t.Field(i)fieldType := field.Typefmt.Printf("Field: %s, Type: %s\n", field.Name, fieldType.Name())}
}type base struct {Value int
}type m1 struct {Value stringbase
}
/*
{hello world {1}}
Field: Value, Type: string
Field: base, Type: base*/
go">//方法
func main() {a1 := m1{}a1.test()a1.base.test()fmt.Println(a1)//获取a1中的所有字段类型t := reflect.TypeOf(a1)for i := 0; i < t.NumField(); i++ {field := t.Field(i)fieldType := field.Typefmt.Printf("Field: %s, Type: %s\n", field.Name, fieldType.Name())}
}type base struct {Value int
}func (b *base) test() {b.Value = 1
}
func (m *m1) test() {m.Value = "hello world"
}type m1 struct {Value stringbase
}
/*
{hello world {1}}
Field: Value, Type: string
Field: base, Type: base*/

4.3 可见性

  • 首字母大写表示该字段/方法/结构体为可导出的,反之为不可导出的
  • 在同一个包内,不区分是否可导出,都可访问;包外只能访问可导出的字段/方法/结构体
  • 不可导出的字段不可以进行序列化(转化为json)
  • 可通过可导出的方法去操作不可导出的字段
go">// test/test1.go
package testtype User struct {Name stringage  int
}func (u *User) Test() {u.Name = "hello"u.age = 18
}func (u *User) test() {u.Name = "world"u.age = 81
}type student struct {Name stringage  int
}
go">//main.go
package mainimport ("fmt""test/test"
)func main() {a := test.User{}//b := test.student{} // 不能在包外访问未导出结构体a.Name = "123"//a.age = 123 // 不能在包外访问未导出字段a.Test()//a.test() // 不能在包外访问未导出方法fmt.Println(a)/*{hello 18}*/
}

4.4 方法与函数

4.4.1 区别

  • 方法定义是必须有一个接收器(receiver);函数不需要
  • 大部分情况下,方法的调用需要有一个对象;函数不需要
  • 由于go中的所有传递都是值传递,也就是将数据复制一份再调用,所以如果想要修改原本对象的值,就要传递指针,进行引用传递
go">func 函数名 (参数) 返回值类型 {函数体} //函数定义
func (接收器) 方法名  (参数) 返回值类型 {函数体} // 方法定义
go">func main() {a := User{}a.setName() // 方法调用fmt.Println(a)setName(&a) // 函数调用fmt.Println(a)
}
/*{world 0}{hello 0}*/type User struct {Name stringage  int
}
//函数
func setName(u *User) {u.Name = "hello"
}
//方法
func (u *User) setName() {u.Name = "world"
}

值传递时可以通过返回值的方式修改目标对象

go">func main() {a := User{}a = a.setName() //需要显式给原变量赋值fmt.Println(a)a = setName(a)  //需要显式给原变量赋值fmt.Println(a)
}type User struct {Name stringage  int
}func setName(u User) User {u.Name = "hello"return u
}
func (u User) setName() User {u.Name = "world"return u
}

4.4.2 闭包

说到函数和方法,就必须说一下闭包

什么是闭包?

简单来说,就是函数内部引用函数外部变量,导致变量生命周期发生变化。这样的函数就叫做闭包

常见于函数返回值为另一个函数时

go">package mainimport "fmt"func main() {b := test()fmt.Println(b())fmt.Println(b())
}func test() func() int {a := 1return func() int {a++return a}
}

上面的函数导致变量a无法正常释放,导致变量逃逸

go build -gcflags="-m" main.go
# command-line-arguments
./main.go:11:6: can inline test
./main.go:13:9: can inline test.func1
./main.go:6:11: inlining call to test
./main.go:13:9: can inline main.test.func1
./main.go:7:15: inlining call to main.test.func1
./main.go:7:13: inlining call to fmt.Println
./main.go:8:15: inlining call to main.test.func1
./main.go:8:13: inlining call to fmt.Println
./main.go:6:11: func literal does not escape
./main.go:7:13: ... argument does not escape
./main.go:7:15: ~R0 escapes to heap
./main.go:8:13: ... argument does not escape
./main.go:8:15: ~R0 escapes to heap
./main.go:12:2: moved to heap: a
./main.go:13:9: func literal escapes to heap

4.5 Tag 字段标签

4.5.1定义

在reflect包中提供了获取字段名称、类型、Tag的方法(上文展示过获取名称和类型)

结构体StructField表示结构体的一个字段(reflect/type.go)

go">// A StructField describes a single field in a struct.
type StructField struct {// Name is the field name.Name string// PkgPath is the package path that qualifies a lower case (unexported)// field name. It is empty for upper case (exported) field names.// See https://golang>golang.org/ref/spec#Uniqueness_of_identifiersPkgPath stringType      Type      // field typeTag       StructTag // field tag stringOffset    uintptr   // offset within struct, in bytesIndex     []int     // index sequence for Type.FieldByIndexAnonymous bool      // is an embedded field
}type StructTag string 

4.5.2 Tag规范

StructTag本质上就是字符串,理论上任何形式都符合规范。但通常情况下约定,Tag的格式应该是key:“value”

  • key:非空字符串,不能包含控制字符,空格,引号,冒号
  • value:双引号包围的字符串
  • 冒号前后不能有空格,多个value用逗号隔开,key之间用空格隔开
  • key一般表示用途,value表示控制指令;

4.5.3 Tag意义

  • Go语言反射机制可以给结构体成员赋值,用Tag可以决定赋值的动作
  • 可以使用定义好的Tag规则,参考规则就可以继续不同的操作
go">//仅对Tag值为true的字段赋值(Tag决定赋值动作)
type Person struct {Name string `assign:"true"`Age  int    `assign:"false"`
}func assignValues(v interface{}) {val := reflect.ValueOf(v).Elem() // 获取指针指向的值typ := val.Type()for i := 0; i < val.NumField(); i++ {field := val.Field(i)tag := typ.Field(i).Tag.Get("assign") // 获取字段的tagif tag == "true" {// 根据字段类型赋值switch field.Kind() {case reflect.String:field.SetString("Default Name")case reflect.Int:field.SetInt(25)}}}
}func main() {p := &Person{}assignValues(p)fmt.Printf("Person: %+v\n", p)
}
/*
Person: &{Name:Default Name Age:0}*/

下方例子使用了json:“kind,omitempty”,这个tag规定了字段为空不进行序列化;

go">import ("encoding/json""fmt"
)type Person struct {Name  string `json:"kind,omitempty"` //为空时不进行序列化Value intage   int
}func main() {// 创建一个 Person 实例p := Person{Name: "", Value: 100, age: 100}// 序列化为 JSONjsonData, _ := json.Marshal(p)fmt.Println(string(jsonData)) /*{"Value":100}*/
}

http://www.ppmy.cn/news/1575650.html

相关文章

从工程师到系统架构设计师

在技术领域&#xff0c;从一名初出茅庐的工程师成长为独当一面的系统架构设计师&#xff0c;是一条需要长期积累、持续突破的路径。这一过程不仅需要扎实的技术功底&#xff0c;更需要思维的升级和视野的拓展。以下将结合不同阶段的特征&#xff0c;为你梳理一条清晰的成长路线…

docker file中ADD命令的介绍

在 Docker 的世界里&#xff0c;Dockerfile 是一个用于定义镜像内容和行为的脚本文件。其中&#xff0c;ADD 指令是 Dockerfile 中一个非常重要的命令&#xff0c;用于将文件或目录从主机文件系统复制到容器的文件系统中。本文将详细介绍 ADD 指令的作用、使用方式以及一些最佳…

《以太坊账户模型与数据结构:探秘区块链世界的架构密码》

目录 引言一、以太坊账户模型二、数据结构的选择&#xff08;一&#xff09; 哈希表&#xff08;二&#xff09; Merkle Tree&#xff08;三&#xff09; Sorted Merkle TreeSorted Merkle Tree 的优缺点Sorted Merkle Tree 的应用场景Sorted Merkle Tree 与普通 Merkle Tree 对…

团队协作中的分支合并:构建高效开发流程的关键

项目场景 git pull origin 直接用 git pull 就能拉取远程仓库的分支 这是什么原理? git pull 命令会从远程仓库拉取最新的更改并合并到当前分支。它的具体行为取决于你是否指定了远程仓库和分支名称。 git pull 的默认行为 如果你只使用 git pull 而没有指定远程仓库和分支名…

docker里面pgadmin4自动备份pg数据库操作

一、需求 上线之后要求数据库数据每天备份&#xff0c;但是之前一直是人用pgadmin4 的界面手动点击备份&#xff0c;偶尔会忘记点击&#xff0c;就忘记备份了。每次下班前备份&#xff0c;除了会影响下班&#xff0c;还会忘记&#xff0c;就想都是脚本&#xff0c;手写一个自动…

Linux——mplayer项目

部分来源&#xff1a;看见代码就想敲 一&#xff0c;功能 二.VT100讲解 [1]简介 VT100是一个古老的终端定义,后面出现的终端几乎都兼容这种终端 VT100控制码是用来在终端扩展显示的代码。比如果终端上任意坐标用不同的颜色显示字符。 规则&#xff1a; <1>所有的vt10…

DeepSeek开源周第二日-DeepEP

&#x1f680;deepseek开源周第二天&#xff0c;DeepEP&#xff1a;专为MoE和专家并行打造的高性能通信库 &#x1f525;DeepEP 主要特点 &#x1f4a1; 高效 GPU 通信内核&#xff1a;提供高吞吐、低延迟的 all-to-all GPU 内核&#xff08;MoE dispatch & combine&…

【Go | 从0实现简单分布式缓存】-5:使用Protobuf通信

本文为极客兔兔动手写分布式缓存GeeCache学习笔记。 本文目录 一、Protobuf简述二、使用Protobuf开发三、使用protobuf的好处 一、Protobuf简述 之前已经讲过Protobuf了&#xff0c;这里在回顾一下&#xff0c;就是protobuf 即 Protocol Buffers&#xff0c;Google 开发的一种…