【YOLOv8】YOLOv8改进系列(3)----替换主干网络之ConvNeXt V2

news/2025/2/27 3:44:45/

主页:HABUO🍁主页:HABUO

🍁YOLOv8入门+改进专栏🍁

🍁如果再也不能见到你,祝你早安,午安,晚安🍁


YOLOv8改进系列】: 

YOLOv8】YOLOv8结构解读

YOLOv8改进系列(1)----替换主干网络之EfficientViT

 YOLOv8改进系列(2)----替换主干网络之FasterNet


目录

💯一、ConvNeXt V2介绍

1. 简介

2. ConvNeXt V2架构

2.1 全卷积掩码自编码器(FCMAE)

2.2 全局响应归一化(GRN)

3. 实验结果

3.1 ImageNet分类

3.2 COCO目标检测和分割

3.3 ADE20K语义分割

4. 关键结论

💯二、具体添加方法 

第①步:创建convnextv2.py

第②步:修改task.py 

(1)引入创建的convnextv2文件 

(2)修改_predict_once函数 

(3)修改parse_model函数

第③步:yolov8.yaml文件修改   

第④步:验证是否加入成功   


💯一、ConvNeXt V2介绍

  • 论文题目:《ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders》
  • 论文地址:2301.00808

1. 简介

论文提出了一个全卷积掩码自编码器框架和一个新的全局响应归一化(Global Response Normalization, GRN)层,用于增强 ConvNeXt 架构中通道间的特征竞争。这种自监督学习技术和架构改进的结合,形成了新的模型家族 ConvNeXt V2。

2. ConvNeXt V2架构

ConvNeXt V2 是在 ConvNeXt V1 的基础上改进而来,主要引入了以下两个关键创新:

2.1 全卷积掩码自编码器(FCMAE)

FCMAE 是一种全卷积的自监督学习框架,用于预训练 ConvNeXt V2 模型。其核心思想是随机掩盖输入图像的一部分,并让模型根据剩余的上下文预测被掩盖的部分。FCMAE 的主要组件包括:

  • 掩码策略:随机掩盖输入图像的60%。

  • 编码器设计:使用 ConvNeXt 模型作为编码器,并引入稀疏卷积(sparse convolution)来处理被掩盖的图像,防止信息从被掩盖区域泄露。

  • 解码器设计:使用轻量级的 ConvNeXt 块作为解码器,简化了整体架构。

  • 重建目标:计算重建图像与目标图像之间的均方误差(MSE),仅在被掩盖的区域计算损失。

2.2 全局响应归一化(GRN)

GRN 是一种新的归一化层,旨在增强通道间的特征竞争,解决 ConvNeXt V1 在掩码自编码器预训练时出现的特征坍塌问题。GRN 的工作流程包括:

  1. 全局特征聚合:通过全局函数聚合特征图。

  2. 特征归一化:对聚合后的特征进行归一化处理。

  3. 特征校准:将归一化后的特征重新校准到原始输入中。

GRN 的引入显著提高了模型在掩码自编码器预训练下的性能,且无需额外的参数开销。


3. 实验结果

论文通过一系列实验验证了 ConvNeXt V2 的性能提升,主要体现在以下几个方面:

3.1 ImageNet分类

ConvNeXt V2 在 ImageNet 分类任务上表现出色,尤其是在使用 FCMAE 预训练后,性能提升显著。例如:

  • Atto模型(3.7M 参数)在 ImageNet 上达到了 76.7% 的 top-1 准确率。

  • Huge模型(650M 参数)达到了 88.9% 的 top-1 准确率,刷新了使用公开数据的最高记录。

3.2 COCO目标检测和分割

在 COCO 数据集上,使用 Mask R-CNN 进行微调时,ConvNeXt V2 的性能优于 ConvNeXt V1 和其他基于 Swin Transformer 的模型。例如:

  • Base模型的 AP box 提升到 52.9%,AP mask 提升到 70.0%。

  • Huge模型的 AP box 提升到 55.7%,AP mask 提升到 72.8%。

3.3 ADE20K语义分割

在 ADE20K 数据集上,使用 UperNet 进行微调时,ConvNeXt V2 的性能也优于 ConvNeXt V1 和其他基于 Swin Transformer 的模型。例如:

  • Base模型的 mIoU 提升到 52.1%。

  • Huge模型的 mIoU 提升到 55.0%。


4. 关键结论

  • 架构与学习框架的协同设计:通过重新设计 ConvNeXt 架构和自监督学习框架,ConvNeXt V2 在多种视觉任务上表现出色,证明了架构与学习框架协同设计的重要性。

  • 掩码自编码器的有效性:FCMAE 框架使得 ConvNeXt V2 能够从掩码自编码器预训练中受益,显著提升了性能。

  • GRN层的作用:GRN 层通过增强特征多样性,解决了 ConvNeXt V1 在掩码自编码器预训练时的特征坍塌问题,是 ConvNeXt V2 性能提升的关键。


💯二、具体添加方法 

第①步:创建convnextv2.py

创建完成后,将下面代码直接复制粘贴进去:

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from timm.models.layers import trunc_normal_, DropPath__all__ = ['convnextv2_atto', 'convnextv2_femto', 'convnextv2_pico', 'convnextv2_nano', 'convnextv2_tiny', 'convnextv2_base', 'convnextv2_large', 'convnextv2_huge']class LayerNorm(nn.Module):""" LayerNorm that supports two data formats: channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width)."""def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):super().__init__()self.weight = nn.Parameter(torch.ones(normalized_shape))self.bias = nn.Parameter(torch.zeros(normalized_shape))self.eps = epsself.data_format = data_formatif self.data_format not in ["channels_last", "channels_first"]:raise NotImplementedError self.normalized_shape = (normalized_shape, )def forward(self, x):if self.data_format == "channels_last":return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)elif self.data_format == "channels_first":u = x.mean(1, keepdim=True)s = (x - u).pow(2).mean(1, keepdim=True)x = (x - u) / torch.sqrt(s + self.eps)x = self.weight[:, None, None] * x + self.bias[:, None, None]return xclass GRN(nn.Module):""" GRN (Global Response Normalization) layer"""def __init__(self, dim):super().__init__()self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))def forward(self, x):Gx = torch.norm(x, p=2, dim=(1,2), keepdim=True)Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)return self.gamma * (x * Nx) + self.beta + xclass Block(nn.Module):""" ConvNeXtV2 Block.Args:dim (int): Number of input channels.drop_path (float): Stochastic depth rate. Default: 0.0"""def __init__(self, dim, drop_path=0.):super().__init__()self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise convself.norm = LayerNorm(dim, eps=1e-6)self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layersself.act = nn.GELU()self.grn = GRN(4 * dim)self.pwconv2 = nn.Linear(4 * dim, dim)self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()def forward(self, x):input = xx = self.dwconv(x)x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)x = self.norm(x)x = self.pwconv1(x)x = self.act(x)x = self.grn(x)x = self.pwconv2(x)x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)x = input + self.drop_path(x)return xclass ConvNeXtV2(nn.Module):""" ConvNeXt V2Args:in_chans (int): Number of input image channels. Default: 3num_classes (int): Number of classes for classification head. Default: 1000depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]drop_path_rate (float): Stochastic depth rate. Default: 0.head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1."""def __init__(self, in_chans=3, num_classes=1000, depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], drop_path_rate=0., head_init_scale=1.):super().__init__()self.depths = depthsself.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layersstem = nn.Sequential(nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),LayerNorm(dims[0], eps=1e-6, data_format="channels_first"))self.downsample_layers.append(stem)for i in range(3):downsample_layer = nn.Sequential(LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2),)self.downsample_layers.append(downsample_layer)self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocksdp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] cur = 0for i in range(4):stage = nn.Sequential(*[Block(dim=dims[i], drop_path=dp_rates[cur + j]) for j in range(depths[i])])self.stages.append(stage)cur += depths[i]self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layerself.head = nn.Linear(dims[-1], num_classes)self.apply(self._init_weights)self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]def _init_weights(self, m):if isinstance(m, (nn.Conv2d, nn.Linear)):trunc_normal_(m.weight, std=.02)nn.init.constant_(m.bias, 0)def forward(self, x):res = []for i in range(4):x = self.downsample_layers[i](x)x = self.stages[i](x)res.append(x)return resdef update_weight(model_dict, weight_dict):idx, temp_dict = 0, {}for k, v in weight_dict.items():if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):temp_dict[k] = vidx += 1model_dict.update(temp_dict)print(f'loading weights... {idx}/{len(model_dict)} items')return model_dictdef convnextv2_atto(weights='', **kwargs):model = ConvNeXtV2(depths=[2, 2, 6, 2], dims=[40, 80, 160, 320], **kwargs)if weights:model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)['model']))return modeldef convnextv2_femto(weights='', **kwargs):model = ConvNeXtV2(depths=[2, 2, 6, 2], dims=[48, 96, 192, 384], **kwargs)if weights:model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)['model']))return modeldef convnextv2_pico(weights='', **kwargs):model = ConvNeXtV2(depths=[2, 2, 6, 2], dims=[64, 128, 256, 512], **kwargs)if weights:model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)['model']))return modeldef convnextv2_nano(weights='', **kwargs):model = ConvNeXtV2(depths=[2, 2, 8, 2], dims=[80, 160, 320, 640], **kwargs)if weights:model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)['model']))return modeldef convnextv2_tiny(weights='', **kwargs):model = ConvNeXtV2(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs)if weights:model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)['model']))return modeldef convnextv2_base(weights='', **kwargs):model = ConvNeXtV2(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs)if weights:model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)['model']))return modeldef convnextv2_large(weights='', **kwargs):model = ConvNeXtV2(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs)if weights:model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)['model']))return modeldef convnextv2_huge(weights='', **kwargs):model = ConvNeXtV2(depths=[3, 3, 27, 3], dims=[352, 704, 1408, 2816], **kwargs)if weights:model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)['model']))return model

第②步:修改task.py 

(1)引入创建的convnextv2文件 

from ultralytics.nn.backbone.convnextv2 import *

(2)修改_predict_once函数 

    def _predict_once(self, x, profile=False, visualize=False, embed=None):"""Perform a forward pass through the network.Args:x (torch.Tensor): The input tensor to the model.profile (bool):  Print the computation time of each layer if True, defaults to False.visualize (bool): Save the feature maps of the model if True, defaults to False.embed (list, optional): A list of feature vectors/embeddings to return.Returns:(torch.Tensor): The last output of the model."""y, dt, embeddings = [], [], []  # outputsfor idx, m in enumerate(self.model):if m.f != -1:  # if not from previous layerx = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layersif profile:self._profile_one_layer(m, x, dt)if hasattr(m, 'backbone'):x = m(x)for _ in range(5 - len(x)):x.insert(0, None)for i_idx, i in enumerate(x):if i_idx in self.save:y.append(i)else:y.append(None)# print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x if x_ is not None])}')x = x[-1]else:x = m(x)  # runy.append(x if m.i in self.save else None)  # save output# if type(x) in {list, tuple}:#     if idx == (len(self.model) - 1):#         if type(x[1]) is dict:#             print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x[1]["one2one"]])}')#         else:#             print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x[1]])}')#     else:#         print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x if x_ is not None])}')# elif type(x) is dict:#     print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x["one2one"]])}')# else:#     if not hasattr(m, 'backbone'):#         print(f'layer id:{idx:>2} {m.type:>50} output shape:{x.size()}')if visualize:feature_visualization(x, m.type, m.i, save_dir=visualize)if embed and m.i in embed:embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flattenif m.i == max(embed):return torch.unbind(torch.cat(embeddings, 1), dim=0)return x

(3)修改parse_model函数

可以直接把下面的代码粘贴到对应的位置中,后续的改进中,对应的模块就不需要做出改变,有改变处,后续会另有说明 

def parse_model(d, ch, verbose=True, warehouse_manager=None):  # model_dict, input_channels(3)"""Parse a YOLO model.yaml dictionary into a PyTorch model."""import ast# Argsmax_channels = float("inf")nc, act, scales = (d.get(x) for x in ("nc", "activation", "scales"))depth, width, kpt_shape = (d.get(x, 1.0) for x in ("depth_multiple", "width_multiple", "kpt_shape"))if scales:scale = d.get("scale")if not scale:scale = tuple(scales.keys())[0]LOGGER.warning(f"WARNING ⚠️ no model scale passed. Assuming scale='{scale}'.")if len(scales[scale]) == 3:depth, width, max_channels = scales[scale]elif len(scales[scale]) == 4:depth, width, max_channels, threshold = scales[scale]if act:Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()if verbose:LOGGER.info(f"{colorstr('activation:')} {act}")  # printif verbose:LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10}  {'module':<60}{'arguments':<50}")ch = [ch]layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch outis_backbone = Falsefor i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]):  # from, number, module, argstry:if m == 'node_mode':m = d[m]if len(args) > 0:if args[0] == 'head_channel':args[0] = int(d[args[0]])t = mm = getattr(torch.nn, m[3:]) if 'nn.' in m else globals()[m]  # get moduleexcept:passfor j, a in enumerate(args):if isinstance(a, str):with contextlib.suppress(ValueError):try:args[j] = locals()[a] if a in locals() else ast.literal_eval(a)except:args[j] = an = n_ = max(round(n * depth), 1) if n > 1 else n  # depth gainif m in {Classify, Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus, BottleneckCSP, C1, C2, C2f, ELAN1, AConv, SPPELAN, C2fAttn, C3, C3TR, C3Ghost, nn.Conv2d, nn.ConvTranspose2d, DWConvTranspose2d, C3x, RepC3, PSA, SCDown, C2fCIB, C2f_Faster, C2f_ODConv,C2f_Faster_EMA, C2f_DBB, GSConv, GSConvns, VoVGSCSP, VoVGSCSPns, VoVGSCSPC, C2f_CloAtt, C3_CloAtt, SCConv, C2f_SCConv, C3_SCConv, C2f_ScConv, C3_ScConv,C3_EMSC, C3_EMSCP, C2f_EMSC, C2f_EMSCP, RCSOSA, KWConv, C2f_KW, C3_KW, DySnakeConv, C2f_DySnakeConv, C3_DySnakeConv,DCNv2, C3_DCNv2, C2f_DCNv2, DCNV3_YOLO, C3_DCNv3, C2f_DCNv3, C3_Faster, C3_Faster_EMA, C3_ODConv,OREPA, OREPA_LargeConv, RepVGGBlock_OREPA, C3_OREPA, C2f_OREPA, C3_DBB, C3_REPVGGOREPA, C2f_REPVGGOREPA,C3_DCNv2_Dynamic, C2f_DCNv2_Dynamic, C3_ContextGuided, C2f_ContextGuided, C3_MSBlock, C2f_MSBlock,C3_DLKA, C2f_DLKA, CSPStage, SPDConv, RepBlock, C3_EMBC, C2f_EMBC, SPPF_LSKA, C3_DAttention, C2f_DAttention,C3_Parc, C2f_Parc, C3_DWR, C2f_DWR, RFAConv, RFCAConv, RFCBAMConv, C3_RFAConv, C2f_RFAConv,C3_RFCBAMConv, C2f_RFCBAMConv, C3_RFCAConv, C2f_RFCAConv, C3_FocusedLinearAttention, C2f_FocusedLinearAttention,C3_AKConv, C2f_AKConv, AKConv, C3_MLCA, C2f_MLCA,C3_UniRepLKNetBlock, C2f_UniRepLKNetBlock, C3_DRB, C2f_DRB, C3_DWR_DRB, C2f_DWR_DRB, CSP_EDLAN,C3_AggregatedAtt, C2f_AggregatedAtt, DCNV4_YOLO, C3_DCNv4, C2f_DCNv4, HWD, SEAM,C3_SWC, C2f_SWC, C3_iRMB, C2f_iRMB, C3_iRMB_Cascaded, C2f_iRMB_Cascaded, C3_iRMB_DRB, C2f_iRMB_DRB, C3_iRMB_SWC, C2f_iRMB_SWC,C3_VSS, C2f_VSS, C3_LVMB, C2f_LVMB, RepNCSPELAN4, DBBNCSPELAN4, OREPANCSPELAN4, DRBNCSPELAN4, ADown, V7DownSampling,C3_DynamicConv, C2f_DynamicConv, C3_GhostDynamicConv, C2f_GhostDynamicConv, C3_RVB, C2f_RVB, C3_RVB_SE, C2f_RVB_SE, C3_RVB_EMA, C2f_RVB_EMA, DGCST,C3_RetBlock, C2f_RetBlock, C3_PKIModule, C2f_PKIModule, RepNCSPELAN4_CAA, C3_FADC, C2f_FADC, C3_PPA, C2f_PPA, SRFD, DRFD, RGCSPELAN,C3_Faster_CGLU, C2f_Faster_CGLU, C3_Star, C2f_Star, C3_Star_CAA, C2f_Star_CAA, C3_KAN, C2f_KAN, C3_EIEM, C2f_EIEM, C3_DEConv, C2f_DEConv,C3_SMPCGLU, C2f_SMPCGLU, C3_Heat, C2f_Heat, CSP_PTB, SimpleStem, VisionClueMerge, VSSBlock_YOLO, XSSBlock, GLSA, C2f_WTConv, WTConv2d, FeaturePyramidSharedConv,C2f_FMB, LDConv, C2f_gConv, C2f_WDBB, C2f_DeepDBB, C2f_AdditiveBlock, C2f_AdditiveBlock_CGLU, CSP_MSCB, C2f_MSMHSA_CGLU, CSP_PMSFA, C2f_MogaBlock,C2f_SHSA, C2f_SHSA_CGLU, C2f_SMAFB, C2f_SMAFB_CGLU, C2f_IdentityFormer, C2f_RandomMixing, C2f_PoolingFormer, C2f_ConvFormer, C2f_CaFormer,C2f_IdentityFormerCGLU, C2f_RandomMixingCGLU, C2f_PoolingFormerCGLU, C2f_ConvFormerCGLU, C2f_CaFormerCGLU, CSP_MutilScaleEdgeInformationEnhance, C2f_FFCM,C2f_SFHF, CSP_FreqSpatial, C2f_MSM, C2f_RAB, C2f_HDRAB, C2f_LFE, CSP_MutilScaleEdgeInformationSelect, C2f_SFA, C2f_CTA, C2f_CAMixer, MANet,MANet_FasterBlock, MANet_FasterCGLU, MANet_Star, C2f_HFERB, C2f_DTAB, C2f_ETB, C2f_JDPM, C2f_AP, PSConv, C2f_Kat, C2f_Faster_KAN, C2f_Strip, C2f_StripCGLU}:if args[0] == 'head_channel':args[0] = d[args[0]]c1, c2 = ch[f], args[0]if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)c2 = make_divisible(min(c2, max_channels) * width, 8)if m is C2fAttn:args[1] = make_divisible(min(args[1], max_channels // 2) * width, 8)  # embed channelsargs[2] = int(max(round(min(args[2], max_channels // 2 // 32)) * width, 1) if args[2] > 1 else args[2])  # num headsargs = [c1, c2, *args[1:]]if m in (KWConv, C2f_KW, C3_KW):args.insert(2, f'layer{i}')args.insert(2, warehouse_manager)if m in (DySnakeConv,):c2 = c2 * 3if m in (RepNCSPELAN4, DBBNCSPELAN4, OREPANCSPELAN4, DRBNCSPELAN4, RepNCSPELAN4_CAA):args[2] = make_divisible(min(args[2], max_channels) * width, 8)args[3] = make_divisible(min(args[3], max_channels) * width, 8)if m in {BottleneckCSP, C1, C2, C2f, C2fAttn, C3, C3TR, C3Ghost, C3x, RepC3, C2fCIB, C2f_Faster, C2f_ODConv, C2f_Faster_EMA, C2f_DBB,VoVGSCSP, VoVGSCSPns, VoVGSCSPC, C2f_CloAtt, C3_CloAtt, C2f_SCConv, C3_SCConv, C2f_ScConv, C3_ScConv,C3_EMSC, C3_EMSCP, C2f_EMSC, C2f_EMSCP, RCSOSA, C2f_KW, C3_KW, C2f_DySnakeConv, C3_DySnakeConv,C3_DCNv2, C2f_DCNv2, C3_DCNv3, C2f_DCNv3, C3_Faster, C3_Faster_EMA, C3_ODConv, C3_OREPA, C2f_OREPA, C3_DBB,C3_REPVGGOREPA, C2f_REPVGGOREPA, C3_DCNv2_Dynamic, C2f_DCNv2_Dynamic, C3_ContextGuided, C2f_ContextGuided, C3_MSBlock, C2f_MSBlock, C3_DLKA, C2f_DLKA, CSPStage, RepBlock, C3_EMBC, C2f_EMBC, C3_DAttention, C2f_DAttention,C3_Parc, C2f_Parc, C3_DWR, C2f_DWR, C3_RFAConv, C2f_RFAConv, C3_RFCBAMConv, C2f_RFCBAMConv, C3_RFCAConv, C2f_RFCAConv,C3_FocusedLinearAttention, C2f_FocusedLinearAttention, C3_AKConv, C2f_AKConv, C3_MLCA, C2f_MLCA,C3_UniRepLKNetBlock, C2f_UniRepLKNetBlock, C3_DRB, C2f_DRB, C3_DWR_DRB, C2f_DWR_DRB, CSP_EDLAN,C3_AggregatedAtt, C2f_AggregatedAtt, C3_DCNv4, C2f_DCNv4, C3_SWC, C2f_SWC,C3_iRMB, C2f_iRMB, C3_iRMB_Cascaded, C2f_iRMB_Cascaded, C3_iRMB_DRB, C2f_iRMB_DRB, C3_iRMB_SWC, C2f_iRMB_SWC,C3_VSS, C2f_VSS, C3_LVMB, C2f_LVMB, C3_DynamicConv, C2f_DynamicConv, C3_GhostDynamicConv, C2f_GhostDynamicConv,C3_RVB, C2f_RVB, C3_RVB_SE, C2f_RVB_SE, C3_RVB_EMA, C2f_RVB_EMA, C3_RetBlock, C2f_RetBlock, C3_PKIModule, C2f_PKIModule,C3_FADC, C2f_FADC, C3_PPA, C2f_PPA, RGCSPELAN, C3_Faster_CGLU, C2f_Faster_CGLU, C3_Star, C2f_Star, C3_Star_CAA, C2f_Star_CAA,C3_KAN, C2f_KAN, C3_EIEM, C2f_EIEM, C3_DEConv, C2f_DEConv, C3_SMPCGLU, C2f_SMPCGLU, C3_Heat, C2f_Heat, CSP_PTB, XSSBlock, C2f_WTConv,C2f_FMB, C2f_gConv, C2f_WDBB, C2f_DeepDBB, C2f_AdditiveBlock, C2f_AdditiveBlock_CGLU, CSP_MSCB, C2f_MSMHSA_CGLU, CSP_PMSFA, C2f_MogaBlock,C2f_SHSA, C2f_SHSA_CGLU, C2f_SMAFB, C2f_SMAFB_CGLU, C2f_IdentityFormer, C2f_RandomMixing, C2f_PoolingFormer, C2f_ConvFormer, C2f_CaFormer,C2f_IdentityFormerCGLU, C2f_RandomMixingCGLU, C2f_PoolingFormerCGLU, C2f_ConvFormerCGLU, C2f_CaFormerCGLU, CSP_MutilScaleEdgeInformationEnhance, C2f_FFCM,C2f_SFHF, CSP_FreqSpatial, C2f_MSM, C2f_RAB, C2f_HDRAB, C2f_LFE, CSP_MutilScaleEdgeInformationSelect, C2f_SFA, C2f_CTA, C2f_CAMixer, MANet,MANet_FasterBlock, MANet_FasterCGLU, MANet_Star, C2f_HFERB, C2f_DTAB, C2f_ETB, C2f_JDPM, C2f_AP, C2f_Kat, C2f_Faster_KAN, C2f_Strip, C2f_StripCGLU}:args.insert(2, n)  # number of repeatsn = 1elif m in {AIFI, AIFI_RepBN}:args = [ch[f], *args]c2 = args[0]elif m in (HGStem, HGBlock, Ghost_HGBlock, Rep_HGBlock, Dynamic_HGBlock, EIEStem):c1, cm, c2 = ch[f], args[0], args[1]if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)c2 = make_divisible(min(c2, max_channels) * width, 8)cm = make_divisible(min(cm, max_channels) * width, 8)args = [c1, cm, c2, *args[2:]]if m in (HGBlock, Ghost_HGBlock, Rep_HGBlock, Dynamic_HGBlock):args.insert(4, n)  # number of repeatsn = 1elif m is ResNetLayer:c2 = args[1] if args[3] else args[1] * 4elif m is nn.BatchNorm2d:args = [ch[f]]elif m is Concat:c2 = sum(ch[x] for x in f)elif m in ((WorldDetect, ImagePoolingAttn) + DETECT_CLASS + V10_DETECT_CLASS + SEGMENT_CLASS + POSE_CLASS + OBB_CLASS):args.append([ch[x] for x in f])if m in SEGMENT_CLASS:args[2] = make_divisible(min(args[2], max_channels) * width, 8)if m in (Segment_LSCD, Segment_TADDH, Segment_LSCSBD, Segment_LSDECD, Segment_RSCD):args[3] = make_divisible(min(args[3], max_channels) * width, 8)if m in (Detect_LSCD, Detect_TADDH, Detect_LSCSBD, Detect_LSDECD, Detect_RSCD, v10Detect_LSCD, v10Detect_TADDH, v10Detect_RSCD, v10Detect_LSDECD):args[1] = make_divisible(min(args[1], max_channels) * width, 8)if m in (Pose_LSCD, Pose_TADDH, Pose_LSCSBD, Pose_LSDECD, Pose_RSCD, OBB_LSCD, OBB_TADDH, OBB_LSCSBD, OBB_LSDECD, OBB_RSCD):args[2] = make_divisible(min(args[2], max_channels) * width, 8)elif m is RTDETRDecoder:  # special case, channels arg must be passed in index 1args.insert(1, [ch[x] for x in f])elif m is Fusion:args[0] = d[args[0]]c1, c2 = [ch[x] for x in f], (sum([ch[x] for x in f]) if args[0] == 'concat' else ch[f[0]])args = [c1, args[0]]elif m is CBLinear:c2 = make_divisible(min(args[0][-1], max_channels) * width, 8)c1 = ch[f]args = [c1, [make_divisible(min(c2_, max_channels) * width, 8) for c2_ in args[0]], *args[1:]]elif m is CBFuse:c2 = ch[f[-1]]elif isinstance(m, str):t = mif len(args) == 2:        m = timm.create_model(m, pretrained=args[0], pretrained_cfg_overlay={'file':args[1]}, features_only=True)elif len(args) == 1:m = timm.create_model(m, pretrained=args[0], features_only=True)c2 = m.feature_info.channels()elif m in {convnextv2_atto, convnextv2_femto, convnextv2_pico, convnextv2_nano, convnextv2_tiny, convnextv2_base, convnextv2_large, convnextv2_huge,fasternet_t0, fasternet_t1, fasternet_t2, fasternet_s, fasternet_m, fasternet_l,EfficientViT_M0, EfficientViT_M1, EfficientViT_M2, EfficientViT_M3, EfficientViT_M4, EfficientViT_M5,efficientformerv2_s0, efficientformerv2_s1, efficientformerv2_s2, efficientformerv2_l,vanillanet_5, vanillanet_6, vanillanet_7, vanillanet_8, vanillanet_9, vanillanet_10, vanillanet_11, vanillanet_12, vanillanet_13, vanillanet_13_x1_5, vanillanet_13_x1_5_ada_pool,RevCol,lsknet_t, lsknet_s,SwinTransformer_Tiny,repvit_m0_9, repvit_m1_0, repvit_m1_1, repvit_m1_5, repvit_m2_3,CSWin_tiny, CSWin_small, CSWin_base, CSWin_large,unireplknet_a, unireplknet_f, unireplknet_p, unireplknet_n, unireplknet_t, unireplknet_s, unireplknet_b, unireplknet_l, unireplknet_xl,transnext_micro, transnext_tiny, transnext_small, transnext_base,RMT_T, RMT_S, RMT_B, RMT_L,PKINET_T, PKINET_S, PKINET_B,MobileNetV4ConvSmall, MobileNetV4ConvMedium, MobileNetV4ConvLarge, MobileNetV4HybridMedium, MobileNetV4HybridLarge,starnet_s050, starnet_s100, starnet_s150, starnet_s1, starnet_s2, starnet_s3, starnet_s4}:if m is RevCol:args[1] = [make_divisible(min(k, max_channels) * width, 8) for k in args[1]]args[2] = [max(round(k * depth), 1) for k in args[2]]m = m(*args)c2 = m.channelelif m in {EMA, SpatialAttention, BiLevelRoutingAttention, BiLevelRoutingAttention_nchw,TripletAttention, CoordAtt, CBAM, BAMBlock, LSKBlock, ScConv, LAWDS, EMSConv, EMSConvP,SEAttention, CPCA, Partial_conv3, FocalModulation, EfficientAttention, MPCA, deformable_LKA,EffectiveSEModule, LSKA, SegNext_Attention, DAttention, MLCA, TransNeXt_AggregatedAttention,FocusedLinearAttention, LocalWindowAttention, ChannelAttention_HSFPN, ELA_HSFPN, CA_HSFPN, CAA_HSFPN, DySample, CARAFE, CAA, ELA, CAFM, AFGCAttention, EUCB, ContrastDrivenFeatureAggregation, FSA}:c2 = ch[f]args = [c2, *args]# print(args)elif m in {SimAM, SpatialGroupEnhance}:c2 = ch[f]elif m is ContextGuidedBlock_Down:c2 = ch[f] * 2args = [ch[f], c2, *args]elif m is BiFusion:c1 = [ch[x] for x in f]c2 = make_divisible(min(args[0], max_channels) * width, 8)args = [c1, c2]# --------------GOLD-YOLO--------------elif m in {SimFusion_4in, AdvPoolFusion}:c2 = sum(ch[x] for x in f)elif m is SimFusion_3in:c2 = args[0]if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)c2 = make_divisible(min(c2, max_channels) * width, 8)args = [[ch[f_] for f_ in f], c2]elif m is IFM:c1 = ch[f]c2 = sum(args[0])args = [c1, *args]elif m is InjectionMultiSum_Auto_pool:c1 = ch[f[0]]c2 = args[0]args = [c1, *args]elif m is PyramidPoolAgg:c2 = args[0]args = [sum([ch[f_] for f_ in f]), *args]elif m is TopBasicLayer:c2 = sum(args[1])# --------------GOLD-YOLO--------------# --------------ASF--------------elif m is Zoom_cat:c2 = sum(ch[x] for x in f)elif m is Add:c2 = ch[f[-1]]elif m in {ScalSeq, DynamicScalSeq}:c1 = [ch[x] for x in f]c2 = make_divisible(args[0] * width, 8)args = [c1, c2]elif m is asf_attention_model:args = [ch[f[-1]]]# --------------ASF--------------elif m is SDI:args = [[ch[x] for x in f]]elif m is Multiply:c2 = ch[f[0]]elif m is FocusFeature:c1 = [ch[x] for x in f]c2 = int(c1[1] * 0.5 * 3)args = [c1, *args]elif m is DASI:c1 = [ch[x] for x in f]args = [c1, c2]elif m is CSMHSA:c1 = [ch[x] for x in f]c2 = ch[f[-1]]args = [c1, c2]elif m is CFC_CRB:c1 = ch[f]c2 = c1 // 2args = [c1, *args]elif m is SFC_G2:c1 = [ch[x] for x in f]c2 = c1[0]args = [c1]elif m in {CGAFusion, CAFMFusion, SDFM, PSFM}:c2 = ch[f[1]]args = [c2, *args]elif m in {ContextGuideFusionModule}:c1 = [ch[x] for x in f]c2 = 2 * c1[1]args = [c1]# elif m in {PSA}:#     c2 = ch[f]#     args = [c2, *args]elif m in {SBA}:c1 = [ch[x] for x in f]c2 = c1[-1]args = [c1, c2]elif m in {WaveletPool}:c2 = ch[f] * 4elif m in {WaveletUnPool}:c2 = ch[f] // 4elif m in {CSPOmniKernel}:c2 = ch[f]args = [c2]elif m in {ChannelTransformer, PyramidContextExtraction}:c1 = [ch[x] for x in f]c2 = c1args = [c1]elif m in {RCM}:c2 = ch[f]args = [c2, *args]elif m in {DynamicInterpolationFusion}:c2 = ch[f[0]]args = [[ch[x] for x in f]]elif m in {FuseBlockMulti}:c2 = ch[f[0]]args = [c2]elif m in {CrossLayerChannelAttention, CrossLayerSpatialAttention}:c2 = [ch[x] for x in f]args = [c2[0], *args]elif m in {FreqFusion}:c2 = ch[f[0]]args = [[ch[x] for x in f], *args]elif m in {DynamicAlignFusion}:c2 = args[0]args = [[ch[x] for x in f], c2]elif m in {ConvEdgeFusion}:c2 = make_divisible(min(args[0], max_channels) * width, 8)args = [[ch[x] for x in f], c2]elif m in {MutilScaleEdgeInfoGenetator}:c1 = ch[f]c2 = [make_divisible(min(i, max_channels) * width, 8) for i in args[0]]args = [c1, c2]elif m in {MultiScaleGatedAttn}:c1 = [ch[x] for x in f]c2 = min(c1)args = [c1]elif m in {WFU, MultiScalePCA, MultiScalePCA_Down}:c1 = [ch[x] for x in f]c2 = c1[0]args = [c1]elif m in {GetIndexOutput}:c2 = ch[f][args[0]]elif m is HyperComputeModule:c1, c2 = ch[f], args[0]c2 = make_divisible(min(c2, max_channels) * width, 8)args = [c1, c2, threshold]else:c2 = ch[f]if isinstance(c2, list) and m not in {ChannelTransformer, PyramidContextExtraction, CrossLayerChannelAttention, CrossLayerSpatialAttention, MutilScaleEdgeInfoGenetator}:is_backbone = Truem_ = mm_.backbone = Trueelse:m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # modulet = str(m)[8:-2].replace('__main__.', '')  # module typem.np = sum(x.numel() for x in m_.parameters())  # number paramsm_.i, m_.f, m_.type = i + 4 if is_backbone else i, f, t  # attach index, 'from' index, typeif verbose:LOGGER.info(f"{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<60}{str(args):<50}")  # printsave.extend(x % (i + 4 if is_backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelistlayers.append(m_)if i == 0:ch = []if isinstance(c2, list) and m not in {ChannelTransformer, PyramidContextExtraction, CrossLayerChannelAttention, CrossLayerSpatialAttention, MutilScaleEdgeInfoGenetator}:ch.extend(c2)for _ in range(5 - len(ch)):ch.insert(0, 0)else:ch.append(c2)return nn.Sequential(*layers), sorted(save)

第③步:yolov8.yaml文件修改   

在下述文件夹中创立yolov8-convnextv2.yaml 

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# 0-P1/2
# 1-P2/4
# 2-P3/8
# 3-P4/16
# 4-P5/32# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, convnextv2_atto, []]  # 4- [-1, 1, SPPF, [1024, 5]]  # 5# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 6- [[-1, 3], 1, Concat, [1]]  # 7 cat backbone P4- [-1, 3, C2f, [512]]  # 8- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 9- [[-1, 2], 1, Concat, [1]]  # 10 cat backbone P3- [-1, 3, C2f, [256]]  # 11 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]] # 12- [[-1, 8], 1, Concat, [1]]  # 13 cat head P4- [-1, 3, C2f, [512]]  # 14 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]] # 15- [[-1, 5], 1, Concat, [1]]  # 16 cat head P5- [-1, 3, C2f, [1024]]  # 17 (P5/32-large)- [[11, 14, 17], 1, Detect, [nc]]  # Detect(P3, P4, P5)

第④步:验证是否加入成功   

将train.py中的配置文件进行修改,并运行  


🏋不是每一粒种子都能开花,但播下种子就比荒芜的旷野强百倍🏋

🍁YOLOv8入门+改进专栏🍁


 YOLOv8改进系列】: 

YOLOv8】YOLOv8结构解读

YOLOv8改进系列(1)----替换主干网络之EfficientViT

 YOLOv8改进系列(2)----替换主干网络之FasterNet



http://www.ppmy.cn/news/1575163.html

相关文章

docker逃逸场景

目录&#xff1a; docker逃逸 docker.sock挂载逃逸 挂载proc 特权模式 docker未授权访问 docker逃逸 docker.sock挂载逃逸 基础知识 Docker Client 和 Docker Daemon Docker Client&#xff1a;这是用户通过命令行与 Docker 进行交互的工具&#xff08;例如你输入的 docker…

【C++】代码构建工具

C 代码构建工具的主要作用是帮助开发者自动化编译、链接和其他相关的构建过程。它们可以简化项目的构建和管理过程&#xff0c;尤其是在涉及多个源文件、库依赖和平台的项目中。 C代码构建工具做了哪些事情&#xff1f; 编译源代码&#xff1a; 将 C 源代码&#xff08;如 .cp…

relief=tk.RAISED详细介绍 relief是指定控件的边框样式

relieftk.RAISED 是在使用 Python 的 Tkinter 库创建图形用户界面&#xff08;GUI&#xff09;时&#xff0c;用于设置控件外观样式的一个参数设置&#xff0c;下面为你详细解释&#xff1a; 整体功能概述 在 Tkinter 里&#xff0c;relief 参数用于指定控件的边框样式&#x…

R 语言科研绘图 --- 柱状图-汇总

在发表科研论文的过程中&#xff0c;科研绘图是必不可少的&#xff0c;一张好看的图形会是文章很大的加分项。 为了便于使用&#xff0c;本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中&#xff0c;获取方式&#xff1a; R 语言科研绘图模板 --- sciRplothttps://mp.…

AI赋能的未来城市:如何用智能化提升生活质量?

这会是我们憧憬的未来城市吗&#xff1f; 随着技术的不断进步和城市化进程的加速&#xff0c;现代城市面临着诸多挑战——交通拥堵、环境污染、能源消耗、人口老龄化等问题愈发突出。为了应对这些挑战&#xff0c;建设智慧城市已成为全球发展的重要趋势。在这一进程中&#xf…

智能自动化新纪元:AI与UiPath RPA的协同应用场景与技术实践

智能自动化新纪元&#xff1a;AI与UiPath RPA的协同应用场景与技术实践 引言 在数字化转型的浪潮中&#xff0c;企业对于自动化技术的需求已从简单的任务执行转向更复杂的智能决策。传统RPA&#xff08;Robotic Process Automation&#xff09;通过模拟人类操作处理重复性任务…

【Linux系统】—— 冯诺依曼体系结构与操作系统初理解

【Linux系统】—— 冯诺依曼体系结构与操作系统初理解 1 冯诺依曼体系结构1.1 基本概念理解1.2 CPU只和内存打交道1.3 为什么冯诺依曼是这种结构1.4 理解数据流动 2 操作系统2.1 什么是操作系统2.2 设计OS的目的2.3 操作系统小知识点2.4 如何理解"管理"2.5 系统调用和…

解决idea一个非常坑的问题

dea中经常会遇到这样问题&#xff0c;明明maven的pom中已经添加了依赖&#xff0c;总是提示jar包找不到&#xff0c; 于是双击clean &#xff0c;或者 点击 reload maven &#xff0c;都是不好使。如 javax.crypto.spec.IvParameterSpec;这个包&#xff0c;竟然飘红了。我clean…