牛客周赛 Round 82(思维、差分、树状数组、大根堆、前后缀、递归)

news/2025/2/26 23:08:40/

文章目录

  • 牛客周赛 Round 82(思维、差分、树状数组、大根堆、前后缀、递归)
    • A. 夹心饼干
    • B. C. 食堂大作战(思维)
    • D. 小苯的排列计数(差分、树状数组)
    • E. 和+和(大根堆,前缀和)
    • F. 怎么写线性SPJ (思维、递归)

牛客周赛 Round 82(思维、差分、树状数组、大根堆、前后缀、递归)

A. 夹心饼干

语法基础题

#include<bits/stdc++.h>
using namespace std;int main(){string s;cin >> s;cout << (s[0] == s[2] ? "YES" : "NO") << endl;return 0;
}

B. C. 食堂大作战(思维)

显然,只要没有两个窗口同时关门,即合法方案。

对于方案,按照关门时间排序,依次输出即可。

#include<bits/stdc++.h>
using namespace std;const int maxn = 1e5 + 5;pair<int, int> a[maxn];int main(){int n;cin >> n;for(int i = 1; i <= n; i++){cin >> a[i].first;a[i].second = i;} sort(a+1, a+1+n);int flag = 1;for(int i = 1; i <= n; i++){if(a[i].first == a[i-1].first){flag = 0;break;}}if(flag){cout << "YES" << endl;}else cout << "NO" << endl;return 0;
}

D. 小苯的排列计数(差分、树状数组)

对于样例:

10

7 7 7 5 5 1 1 1 1 1 1

首先,标黄色的元素的值是确定的。

其次,我们依次来看:

  1. 72,在此处,可以选择 8,9,10。即,有三种选择。(这里表示第二个 7,其他相同形式同理)
  2. 73,在此处,可以选择 8,9,10。但是,这时已经在 72处使用过一个元素,还有两种选择可用。
  3. 52,在此处,可以选择 6,8,9,10。但是,这时已经在 72 和 73 处使用过两个元素,还有两种选择可用。
  4. 依次类推…

对于一个方案,在某元素 x:

  1. 如果第一次出现时,该元素在只能在此处,在此处贡献一种组合的可能。
  2. 如果元素 x 不是第一次出现时:
    • 如有大于该元素的选择,可选择元素的个数等于此处贡献的组合。
    • 如没有大于该元素的选择,则方案不合法。

使用差分和树状数组配合,即可实现,求[x, n] 中的可用元素个数。


#include<bits/stdc++.h>
#define ll long long
using namespace std;const int maxn = 1e6 + 5;
const ll mod = 998244353;ll a[maxn], tree[maxn];int lowbit(int x){return x & (-x);
}void add(int i, int value){while(i < maxn){tree[i] += value;i += lowbit(i);}
}int sum(int i){int res = 0;while(i > 0){res += tree[i];i -= lowbit(i);}return res;
}int main(){int ncase;cin >> ncase;while(ncase--){int n;cin >> n;for(int i = 1; i <= n; i++) cin >> a[i];for(int i = 1; i <= n; i++) tree[i] = 0;for(int i = 1; i <= n; i++) add(i, 1);ll res = 1;for(int i = 1; i <= n; i++){if(a[i] != a[i-1]){if(a[i] > a[i-1]  && i != 1){res = 0;break;}add(a[i], -1);}else{int cnt = sum(n) - sum(a[i]);	// 差分if(cnt == 0){res = 0;break;}else{res = res * cnt % mod;add(a[i]+1, -1);}}}cout << res << endl;}return 0;
}

E. 和+和(大根堆,前缀和)

题意等价于:选一个 x,在 a[1,x] 中选 m 个最小的数,在 b[x+1, n] 中选 m 个最小的数,使得选出的数sum最小。

枚举所有可能的 x,只要能 O(1) 或者 O(log(n)) 求出 a[1,x] 中 m 个最小的数的和,即可。


对于a数组,维护一个大小为 m 的大根堆,即前 i 个元素中最小的 m 个元素。

依次遍历a数组,插入新值a[i],删除最大的元素,维护sum,维护前缀min即可。


对于 b 数组,逆序遍历,操作同上。


#include<bits/stdc++.h>
#define ll long long
using namespace std;const int maxn = 2e5 + 5;ll a[maxn], b[maxn];
ll pre[maxn], suf[maxn];priority_queue<int> qu;int main(){int n, m;cin >> n >> m;for(int i = 1; i <= n; i++) cin >> a[i];for(int i = 1; i <= n; i++) cin >> b[i];ll sum = 0;for(int i = 1; i <= n; i++){sum += a[i];qu.push(a[i]);if(i > m){sum -= qu.top();qu.pop();			}pre[i] = sum;} sum = 0;while(!qu.empty()) qu.pop();for(int i = 1; i <= n; i++){sum += b[n-i+1];qu.push(b[n-i+1]);if(i > m){sum -= qu.top();qu.pop();			}suf[n-i+1] = sum;}ll res = 2e9;for(int i = m; i+m-1 < n; i++){res = min(res, pre[i] + suf[i+1]);}cout << res << endl;return 0;
}

F. 怎么写线性SPJ (思维、递归)

手搓几个样例后,容易想到一个事实:

令 mid = ( l + r ) / 2,如果 a[mid] 是一个 “唯一元素”,接下来,只需要考虑 (l, mid-1) 和 (mid+1, r) 即可。

用相同的思路处理(l, mid-1) 和 (mid+1, r),直到区间大小为 1。(递归)

#include<bits/stdc++.h>
#define ll long long
using namespace std;const int maxn = 2e5 + 5;int a[maxn];void dfs(int l, int r, int num){if(l > r) return; int mid = l + r >> 1;a[mid] = num;dfs(l, mid-1, num+1);dfs(mid+1, r, num+1);
}int main(){int n;cin >> n;dfs(1, n, 1); set<int> s;for(int i = 1; i <= n; i++) s.insert(a[i]);cout << s.size() << endl;for(int i = 1; i <= n; i++) cout << a[i] << " ";return 0;
}

http://www.ppmy.cn/news/1575113.html

相关文章

Java进阶学习笔记95——网络编程

什么是网络编程&#xff1f; 可以让设备中的程序与网络上的其他设备中的程序进行数据交互&#xff08;实现网络通信的&#xff09;。 Java提供了哪些网络编程的解决方案呢&#xff1f; 基本的通信架构&#xff1a; 基本的通信架构有2种形式&#xff1a;CS架构&#xff08;Cli…

【数据挖掘】可信度

【数据挖掘】可信度 目录&#xff1a;1. 训练和测试2. 预测性能评估3. 数据挖掘方法比较分类方法聚类方法关联规则挖掘方法异常检测方法 4. 预测概率5. 损失函数6. 计算成本7. 成本敏感分类8. 提升图&#xff08;Lift Chart&#xff09;作用示例 9. ROC曲线&#xff08;Receive…

2024年国赛高教杯数学建模D题反潜航空深弹命中概率问题解题全过程文档及程序

2024年国赛高教杯数学建模 D题 反潜航空深弹命中概率问题 原题再现 应用深水炸弹&#xff08;简称深弹&#xff09;反潜&#xff0c;曾是二战时期反潜的重要手段&#xff0c;而随着现代军事技术的发展&#xff0c;鱼雷已成为现代反潜作战的主要武器。但是&#xff0c;在海峡或…

Unity FBXExport导出的FBX无法在Blender打开

将FBX转换为obj&#xff1a; Convert 3D models online - free and secure

Wireshark详解

Wireshark使用详解 1.Wireshark 简介2.下载与安装1. 下载地址2. 安装步骤&#xff08;以 Windows 为例&#xff09; 3. 界面与核心功能1. 主界面布局2. 常用菜单功能 4. 过滤功能详解1. 过滤类型2. 常用过滤命令 5. 过滤命令与网络结构对应6. 使用注意事项7. 案例分析 TCP 三次…

一文掌握Selenium的详细使用

文章目录 1. 安装 Selenium1.1 安装 Selenium 库1.2 下载浏览器驱动 2. 基础用法2.1 启动浏览器2.2 查找元素2.3 操作元素 3. 高级功能3.1 等待机制3.2 处理弹窗3.3 执行 JavaScript3.4 切换窗口或 iframe3.5 处理 Cookies3.6 截图3.7 处理下拉菜单 4. 浏览器选项4.1 无头模式&…

Java进阶学习笔记7——权限修饰符

什么是权限修饰符&#xff1f; 就是用来限制类中的成员&#xff08;成员变量、成员方法、构造器、代码块…&#xff09;能够被访问的范围。 protected使用的比较少&#xff0c;但是程序员还是要阅读代码&#xff0c;看官方文档是怎么写的&#xff0c;都会接触到protected修饰…

汽车无钥匙进入一键启动操作正确步骤

汽车智能无钥匙进入和一键启动的技术在近年来比较成熟&#xff0c;不同车型的操作步骤可能略有不同&#xff0c;但基本的流程应该是通用的&#xff0c;不会因为时间变化而有大的改变。 移动管家汽车一键启动无钥匙进入系统通常是通过携带钥匙靠近车辆&#xff0c;然后触摸门把…