【网络通信】传输层之UDP协议

news/2025/2/15 19:40:24/

网络通信】传输层之UDP协议

  • 传输层
    • 端对端通信
      • 实现端到端通信的关键技术
  • UDP协议
    • 再谈端口号
      • 端口号划分
      • 关于端口号的两个问题
    • UDP协议基本格式
    • UDP通信的特点
    • UDP的缓冲区
    • UDP数据报的最大长度
    • 基于UDP的应用层协议
    • 如何封装UDP报文以及如何交付UDP报文
    • 进一步理解封装和解包

传输层

传输层(Transport Layer)是计算机网络体系结构中的一个重要层次,它主要负责端到端的通信,确保数据能从一个终端(节点)传到另一个终端(节点)。它是OSI七层模型中的第四层,也是TCP/IP协议中的重要层之一。它主要提供面向连接和无连接的服务。

端对端通信

端对端通信简单来说就是只关注两个终端之间的直接通信,而忽略了底层网络的差异,为用户提供简单的网络通信模型。端:终端设备。

我们举个通俗点的例子来理解端对端的通信:

假设此时你在给你的朋友写信,信写完后会通过快递员运输,虽然可能你的信件会经过很多地方,但是这些地方都不会关注你的信件的具体内容(它只有到你朋友这里才会被拆封),最终信件到你朋友这里,逻辑上就好像你们直接通信一样

image-20250209121147811

端对端通信就像这样,只不过是在网络中,一条信息经过主机A发送给主机B,中间可能经过很多的路由节点,但是这些路由节点只负责传输数据,并不关系具体内容,最终消息会到主机B手中。逻辑上可以认为是这两个终端直接通信。

实现端到端通信的关键技术

  • 传输层协议:如前面提到的TCP和UDP。TCP提供了一种面向连接的服务,保证了数据的可靠传输;而UDP则是一种无连接的服务,虽然不保证数据的可靠性,但是具有较低的延迟,适用于实时性要求较高的场景。
  • 路由选择:利用IP地址和路由算法决定数据包的最佳路径。尽管路由器不知道所承载的应用层数据的具体意义,但它们根据网络拓扑结构来决定如何最有效地转发数据包。
  • 防火墙与NAT穿越:为了确保端到端的安全性和可访问性,还需要解决诸如防火墙限制和网络地址转换(NAT)带来的挑战。这通常涉及到特定的技术,如STUN、TURN和ICE等,用于帮助建立P2P连接。

下面我们来介绍传输层的两大重要协议:UDPTCP协议。

UDP协议

再谈端口号

端口号是用来标识某个主机中提供网络服务的进程的,它可以区分不同的提供网络服务的进程,因为主机中可能有很多进程在同一时刻提供网络服务。

image-20250209130522892

TCP/IP协议中使用源IP源端口号目的IP目的端口号协议号这样一个五元组来标识一个通信,我们可以使用指令netstat -n来查看:

image-20250209132413759

  1. Proto:协议(Protocol)。显示使用的网络协议>网络协议,这里为tcp,表示使用的是TCP协议。
  2. Recv-Q:接收队列(Receive Queue)。显示连接当前在本地等待上层应用处理的数据量大小。对于已建立的连接,如果这个值不为0,可能意味着数据没有被及时读取。在这个例子中,它的值是0,表明没有未处理的数据。
  3. Send-Q:发送队列(Send Queue)。显示连接当前等待远端主机确认的数据量大小。通常,在连接正常工作时,这个值应该是0,除非远端主机没有正确地确认接收到的数据包。此例中也为0
  4. Local Address:本地地址。显示本地计算机上的IP地址和端口号。这里的127.0.0.1:44636表示这是一个本地回环接口上的连接,即连接发生在本机上,端口号为44636
  5. Foreign Address:外部地址。显示远程计算机的IP地址和端口号。同样地,这里的127.0.0.1:36731表示这也是一个本地回环接口上的连接,端口号为36731。这意味着该连接实际上是在同一台机器上的两个进程之间进行的通信。
  6. State:状态。表示TCP连接的状态。常见的状态包括LISTEN(监听)、ESTABLISHED(已建立)、TIME_WAIT等。这里的TIME_WAIT表示该连接已经完成了正常的关闭过程,但为了确保网络上的所有数据包都被清除,连接暂时保持在这个状态一段时间。

端口号划分

端口号的范围为0~65535,根据注册和用途,大致可以分为以下三类:

  1. 知名端口

    • 范围:0~1023

    • 描述:这些端口通常不会开放给开发者使用,它们用作特殊的服务,为常见的服务器保留。例如:

      • 80 HTTP:超文本传输协议,用于网页浏览。
      • 443 HTTPS:安全的HTTP连接,通过SSL/TLS加密。
      • 25 SMTP:简单邮件传输协议,用于发送电子邮件。
      • 22 SSH:安全外壳协议,用于安全地远程登录到另一台计算机。
  2. 注册端口

    • 范围:1024~49151

    • 描述:这些端口没有被像知名端口一样严格被定义,它可以开放给开发者使用。尽管如此,许多动态服务也会选择在这个范围内运行,只要不与已知的服务冲突即可。

      • 8080 常用作HTTP代理服务器或其他Web服务的备用端口。
      • 1433 Microsoft SQL Server 默认实例使用的端口。
  3. 动态/私有端口

    • 范围:49152到65535

    • 描述:这些端口主要用于客户端的临时通信。因为客户端一般进行网络服务时,bind源端口号都是系统动态bind,所bind的都是这里面的端口号,由于这些端口是动态分配的,因此不应该长期固定地分配给任何特定的服务。

关于端口号的两个问题

  1. 一个进程是否可以bind多个端口号。
    • 同一个进程是可以bind多个端口号的,如果你想提供不同的服务的话。但是同一个套接字不能bind多个端口号,可以在同一个进程中创建不同的套接字,同时给它们bind不同的套接字,这两个套接字分别用于提供不同的服务。
  2. 同一个端口号是否可以被多个套接字bind
    • 一般情况下,同一个端口号不能被多个套接字同时bind。每个套接字bind一个特定的IP地址和端口号组合,如果将第二个套接字bind在已经被bind的套接字上,就会bind失败。
      • 存在特殊情况,在bind前设置套接字模式为SO_REUSEADDR选项,允许多个套接字绑定到相同的IP地址和端口组合,但这通常仅适用于监听套接字,并且主要用于实现高可用性的服务器架构,其中多个实例可以接受客户端连接,这种情况只是为了让服务器可以快速启动,并不是这个端口被多个服务器bind了,因为服务器在被ctrl C终止后,连接会处于一个TIME_WAIT的状态,所以需要等待一段时间,但是这个只有TCP才会出现这种问题。

UDP协议基本格式

image-20250209150931817

传输层在OS内核中就是结构体数据,例如上面的UDP协议也是可以由结构体来描述其数据的,像http协议一样:

struct udphdr {__u16	source;//源端口号__u16	dest;//目的端口号__u16	len;//UDP长度__u16	check;//校验和
};

相关字段介绍:

16位源端口号:填充本进程在网络通信中使用的端口号。

16位目的端口号:填充通信方在网络通信中使用的端口号。

16位UDP长度:填充UDP数据报的总长度,包括头部8字节的数据。

16位UDP校验和:虽然UDP是不可靠的,但是还是提供了简单的数据校验的方法,通常这个校验和的计算是有一个固定的方式的(与此次通信的协议中的字段相关),通过计算填充到这个字段中,通过网络传输后再次计算,如果两次结果不同就证明传输过程中出现了问题。

UDP通信的特点

  1. 无连接:UDP通信不需要事先建立连接,这一点相信很好理解,如果你学习过UDP套接字通信,编写过UDP网络通信的echo代码的话。

  2. 不可靠:UDP协议简单,并没有提供很多对数据检验的方法,所以数据没有TCP可靠。

  3. 面向数据报:这一点在网络编程中有体现,在创建UDP的套接字时,需要将其设置为SOCK_DGRAMDGRAM的中文翻译就是数据报。上述UDP的一个协议就构成一个数据报,它是一个独立的实体,每个数据报都有自己的头部和有效载荷。

    image-20250209153600476

应用层会把数据交付给传输层,如果传输层使用的是UDP协议,它既不会拆分也不会合并而是原样发送。

example:假设此时调用sendto发送1000字节的数据给客户端,客户端也必须调用recvform一次性接收1000字节,而不能调用10次recvfrom循环接收,因为数据包不会被拆分

UDP的缓冲区

  • UDP没有发送缓冲区,调用sendto后,数据会被交给内核中的传输层(通过不同的套接字交给不同的协议),然后进行相应的封装(添加数据头部),之后由OS交给网络层。

  • UDP有接收缓冲区,但是这个接收缓冲区不能保证发送的数据报的顺序是否和发送时一致,同时当这个缓冲区满了之后,数据报会被丢弃。

UDP是全双工的,可以同时接收,同时发送。

UDP数据报的最大长度

在IPv4中,理论上最大的UDP数据报长度可以达到65,535字节(因为UDP长度字段是16位,能表示的最大值是65,535)。如果超过了这个值,需要使用者在应用层手动的进行分片。

基于UDP的应用层协议

基于UDP(用户数据报协议)的应用层协议有很多,它们利用了UDP的低延迟、无连接特性,适用于那些对实时性要求较高但可以容忍一定程度的数据丢失或乱序的应用场景。以下是一些常见的基于UDP的应用层协议:

  1. DNS (Domain Name System)

    • 用途:用于将域名转换为IP地址。
    • 为什么使用UDP:DNS查询通常很小且需要快速响应,UDP的低开销和低延迟使其成为理想选择。尽管有时也会使用TCP,但大多数DNS查询是通过UDP进行的。
  2. DHCP (Dynamic Host Configuration Protocol)

    • 用途:自动分配IP地址和其他网络配置参数给设备。
    • 为什么使用UDP:DHCP消息较短且频繁,使用UDP可以减少处理时间,提高效率。
  3. TFTP (Trivial File Transfer Protocol)

    • 用途:简单的文件传输协议,主要用于启动无盘工作站或在网络设备间传输配置文件等。
    • 为什么使用UDP:TFTP设计简单,不提供复杂的错误恢复机制,适合小规模文件传输。
  4. NTP (Network Time Protocol)

    • 用途:同步计算机时钟到协调世界时(UTC)。
    • 为什么使用UDP:NTP需要高精度的时间同步,UDP的低延迟特性有助于实现这一目标。即使偶尔丢失数据包也不会严重影响整体同步精度。

如何封装UDP报文以及如何交付UDP报文

  1. 封装UDP报文:

    • 当我们从上层(应用层)拿到数据时,直接在数据的前面添加UDP的报头即可。
  2. 交付UDP报文:

    • 当我们从网络层拿到了一个完整的UDP报文接下来如何将UDP报文的数据交付给上层应用呢?我们结合UDP协议来画图分析(只关心相关的层):

      image-20250209202434950

进一步理解封装和解包

如果仅仅理解封装和解包到图的角度,还是太肤浅了,我们尝试在代码级理解封装和解包。

我们都知道传输层和网络层都属于OS的一部分,OS中是可能存在很多报文的,这些报文还没来得及处理,可能在网络层也可能在传输层的缓冲区,我们需要对这些报文做管理:先描述后组织

封装

image-20250209210543499

解包image-20250209211147024

所以最终的解包和封装就转化成了指针的加减

管理报文

image-20250209211449848

对报文的管理就转化为了对链表的增删查改


http://www.ppmy.cn/news/1572324.html

相关文章

《Keras 3 :当 Recurrence 遇到 Transformers 时》

《Keras 3 :当 Recurrence 遇到 Transformers 时》 作者:Aritra Roy Gosthipaty, Suvaditya Mukherjee 创建日期:2023/03/12 最后修改时间:2024/11/12 描述:具有时间潜在瓶颈网络的图像分类。 (i) 此示例使用 Keras 3 在 Colab 中查看 GitHub 源 介绍 简单的递归神…

深入理解DOM:22个核心知识点与代码示例

本文系统介绍DOM相关的22个核心概念,每个知识点均提供代码示例及简要说明,帮助开发者全面掌握DOM操作技巧。 一、DOM基础概念 1. DOM概念 DOM(Document Object Model)是HTML/XML的编程接口,通过JavaScript可动态修改…

【RAG落地利器】Weaviate、Milvus、Qdrant 和 Chroma 向量数据库对比

什么是向量数据库? 向量数据库是一种将数据存储为高维向量的数据库,高维向量是特征或属性的数学表示。每个向量都有一定数量的维度,根据数据的复杂性和粒度,可以从数十到数千不等。 向量通常是通过对原始数据(如文本、图像、音频、视频等)…

vue3-虚拟dom优化

Vue 3 对虚拟 DOM(Virtual DOM)进行了全面重构,通过 编译时优化 和 运行时 Diff 算法改进,大幅提升了渲染性能。以下是其核心优化策略和实现细节的详细解析: 一、虚拟 DOM 的基本原理回顾 虚拟 DOM 是一个轻量级的 J…

CSS实现与文字长度相同的下划线

可以使用伪元素和一些样式属性来实现与文字长度相同的下划线。 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0">&…

Python实现从SMS-Activate平台,自动获取手机号和验证码(进阶版2.0)

前言 本文是该专栏的第52篇,后面会持续分享python的各种干货知识,值得关注。 在本专栏之前,笔者在文章《Python实现SMS-Activate接口调用,获取手机号和验证码》中,有详细介绍基于SMS-Activate平台,通过python来实现自动获取目标国家的手机号以及对应的手机号验证码。 而…

如果网络中断,Promise.race 如何处理?

在使用 Promise.race 时&#xff0c;如果网络中断&#xff0c;通常会导致请求失败&#xff0c;并触发相应的错误处理。这可以通过 Promise.race 中的 Promise 对象来捕获。以下是如何处理网络中断的详细说明。 1. 网络中断的处理 当网络中断时&#xff0c;uni.request、uni.u…

无人机雨季应急救灾技术详解

无人机在雨季应急救灾中发挥着至关重要的作用&#xff0c;其凭借机动灵活、反应迅速、高效安全等特点&#xff0c;为救灾工作提供了强有力的技术支撑。以下是对无人机雨季应急救灾技术的详细解析&#xff1a; 一、无人机在雨季应急救灾中的应用场景 1. 灾情侦查与监测 无人机…