字节跳动后端一面

news/2025/2/11 11:57:50/

📍1. Gzip压缩技术详解
Gzip是一种流行的无损数据压缩格式,它使用DEFLATE算法来减少文件大小,广泛应用于网络传输和文件存储中以提高效率。
🚀 使用场景:
• 网站优化:通过压缩HTML、CSS、JavaScript文件来加速页面加载,提升用户体验。
• 数据备份与归档:压缩大型数据集,减少存储空间和传输带宽。
• API数据传输:压缩API响应,降低网络传输成本,尤其是在移动网络环境下。
• 大数据处理:在Hadoop、Spark等大数据框架中压缩中间结果,提高处理效率。
🔧 Golang使用示例:

import ("bytes""compress/gzip"
)func GzipEncode(data []byte) ([]byte, error) {var buf bytes.Buffergw := gzip.NewWriter(&buf)defer gw.Close()_, err := gw.Write(data)if err!= nil {return nil, err}return buf.Bytes(), nil
}

📍2. MySQL慢查询处理四部曲
• 开启慢查询日志:配置my.cnf文件,设置slow_query_log=1long_query_time阈值,记录执行时间超过阈值的SQL语句。
• 使用分析工具:利用mysqldumpslowpt-query-digest等工具分析慢查询日志,识别频繁执行的慢SQL。
• 优化索引:根据慢查询分析结果,为频繁查询的列创建索引,优化复合索引顺序,遵循最左前缀原则。
• SQL优化:重构SQL语句,避免使用SELECT *,减少JOIN操作,使用LIMIT限制结果集大小,优化子查询和关联查询。

📍3. Binlog日志格式对比

格式特点适用场景
STATEMENT记录SQL语句,日志量小,性能高简单DML操作,不涉及复杂事务
ROW记录行级变更,数据一致性高,可精确恢复复杂事务,需要高数据安全性
MIXED自动切换STATEMENT和ROW格式混合业务场景,兼顾性能和安全性

📍4. MySQL索引优化指南
• B+树索引:理解B+树结构,合理设计索引,支持快速查找和范围查询。
• 最左前缀原则:复合索引按查询频率高的列在前,确保索引高效利用。
• 覆盖索引:优化查询列与索引列,避免回表操作,提高查询效率。
• 索引优化案例:分析查询性能瓶颈,为频繁查询的列添加索引,减少IO操作,提升查询速度。

📍5. 强一致性定义
强一致性(也称为线性一致性或原子一致性)要求分布式系统中所有节点在同一时刻看到的数据完全一致,确保数据的实时性和准确性。
典型实现:两阶段提交(2PC)、Paxos、Raft等分布式一致性算法。
应用场景:金融交易、库存管理、订单处理等对数据一致性要求极高的业务场景。

📍6. Kafka业务场景
• 日志收集与分析:实时采集用户行为日志、系统日志,支持大数据量处理和实时分析。
• 事件驱动架构:实现服务间解耦,通过发布/订阅模式实现异步消息传递,提高系统可扩展性和灵活性。
• 数据管道:作为数据流平台,连接数据源和目标系统,实现数据集成和ETL流程。
• 实时数据流处理:结合Flink、Spark Streaming等流处理框架,实现实时数据分析和决策支持。

📍7. RocketMQ事务消息流程

  1. 发送半消息(prepare消息):生产者发送消息到RocketMQ,消息状态为半消息。
  2. 执行本地事务:生产者执行本地事务操作,如数据库更新、文件写入等。
  3. 根据本地事务结果,提交或回滚消息:生产者根据本地事务执行结果,向RocketMQ发送提交或回滚消息。
    🛡️ 确保消息发送与本地事务执行结果一致,常用于分布式事务场景,如订单支付、库存扣减等。

📍8. 消息队列选型指南
• Kafka:适合大数据量、高吞吐量的场景,如日志收集、实时数据处理、数据流平台等。
• RocketMQ:提供事务消息、顺序消息、消息过滤等高级特性,适合金融、电商等对消息可靠性要求极高的场景。
• 选型考虑:根据业务需求、性能要求、可靠性、功能特性、生态系统支持等因素选择合适的消息队列。

📍9. 消息幂等保障方案
• 唯一消息ID:为每条消息生成唯一ID,消费者在处理消息前检查是否已处理过。
• 数据库去重表:使用数据库表记录已处理消息ID,消费前查询去重表判断消息是否已处理。
• 状态机控制:根据业务状态判断消息是否已处理,确保消息处理逻辑幂等。
• 分布式锁:在高并发场景下,使用分布式锁确保同一时刻只有一个消费者处理消息。

📍10. 死信队列实现
• 设置消息消费超时或重试次数:配置消息队列的消费超时时间和重试次数。
• 消费失败的消息被投递到死信队列(DLQ):消息消费失败后,被自动投递到死信队列。
• 监控DLQ,定期处理失败消息:通过监控工具或定时任务检查DLQ,处理失败消息,如人工干预、自动重试或记录日志。

📍11. Redis分布式锁实现

func RedisDistributedLock(conn redis.Conn, lockKey string, lockValue string, expire int) bool {script := redis.NewScript(1, `if redis.call("setnx", KEYS[1], ARGV[1]) == 1 thenredis.call("expire", KEYS[1], ARGV[2])return 1elsereturn 0end`)result, err := script.Run(conn, []string{lockKey}, []string{lockValue, expire}).Result()if err!= nil {return false}return result.(int) == 1
}

⚠️ 注意锁的过期时间设置,避免死锁,同时考虑锁的续期问题,防止业务执行时间过长导致锁提前释放。

📍12. RedLock解决的问题
RedLock通过多节点分布式锁机制,解决单点Redis故障导致的锁失效问题,确保分布式环境下锁的高可用性和安全性。
主要解决以下问题:
• 单点故障:避免单点Redis宕机导致锁不可用。
• 锁过期释放:在锁过期时间内,如果业务未执行完,防止其他节点获取到锁。
• 脑裂问题:在Redis集群中,避免因网络分区导致多个节点同时持有锁。

📍13. Redis消息队列方案
• List结构:使用LPUSHRPOP实现简单队列,适用于低并发、轻量级消息场景。
• Streams:Redis 5.0引入的新特性,支持消息持久化、消费者组、消息确认、消息ID生成等高级功能,提供更强大的消息队列能力。
应用场景:适用于轻量级、低延迟的消息场景,如实时通知、任务队列等,但需注意消息持久化和数据一致性,确保消息不丢失。

📍14. ES+MySQL架构实践
• MySQL存储事务性数据:作为主数据库,存储订单、用户、交易等事务性数据,保证数据完整性和一致性。
• ES存储非事务性数据:用于全文搜索、数据分析、实时查询等场景,提供快速查询和数据分析能力。
• 数据同步:使用Canal、Logstash等工具实现MySQL到ES的数据同步,保持数据一致性。
• 业务场景:商品信息存储在MySQL,ES提供商品搜索功能,提升用户体验;同时,利用ES进行数据分析,支持业务决策。
• 架构优化:考虑数据一致性、实时性、性能等因素,优化数据同步策略,如增量同步、异步同步等,确保系统稳定高效运行。

📍15. 分库分表策略
• 垂直分库:按业务模块划分数据库,如订单库、用户库等,降低单库压力,提高业务隔离性。
• 水平分表:按某个字段(如用户ID、时间)将大表拆分为多个小表,分散数据存储,提高查询性能。
• 分片键选择:选择均匀分布的字段作为分片键,避免数据倾斜,如使用哈希函数或范围分区。
• 中间件支持:使用ShardingSphere、MyCat等分库分表中间件,简化分库分表操作,提供透明化访问。

📍16. 算法题:二叉树重建及后序遍历

type TreeNode struct {Val   intLeft  *TreeNodeRight *TreeNode
}func buildTree(preorder []int, inorder []int) *TreeNode {if len(preorder) == 0 || len(inorder) == 0 {return nil}root := &TreeNode{Val: preorder[0]}index := findIndex(inorder, preorder[0])root.Left = buildTree(preorder[1:index+1], inorder[:index])root.Right = buildTree(preorder[index+1:], inorder[index+1:])return root
}func findIndex(arr []int, target int) int {for i, v := range arr {if v == target {return i}}return -1
}func postorderTraversal(root *TreeNode) []int {if root == nil {return []int{}}left := postorderTraversal(root.Left)right := postorderTraversal(root.Right)return append(append(left, right...), root.Val)
}

欢迎关注我的小红书一起来讨论。
在这里插入图片描述


http://www.ppmy.cn/news/1571150.html

相关文章

【Linux系统】—— 简易进度条的实现

【Linux系统】—— 简易进度条的实现 1 回车和换行2 缓冲区3 进度条的准备代码4 第一版进度条5 第二版进度条 1 回车和换行 先问大家一个问题:回车换行是什么,或者说回车和换行是同一个概念吗?   可能大家对回车换行有一定的误解&#xff0…

idea Ai工具通义灵码,Copilot我的使用方法以及比较

我用过多个idea Ai 编程工具,大约用了1年时间,来体会他们那个好用,以下只是针对我个人的一点分享,不一定对你适用 仅作参考。 介于篇幅原因我觉得能说上好用的 目前只有两个 一个是阿里的通义灵码和Copilot,我用它来干…

【创业黑科技】格行视精灵:用AI和超清夜视重新定义家庭安防,创业者不容错过的技术革命!

2025创业项目测评:格行视精灵智能监控——家庭安防赛道的新机会? 2025家庭安防智能化趋势与产品技术革新观察 近年来,家庭安防领域呈现出从"被动监控"向"主动防御"升级的显著趋势。根据IDC数据,2024年全球智…

GitCode 助力 Easy-Es,革新 Elasticsearch 开发体验

项目仓库(点击阅读原文链接可直达) https://gitcode.com/dromara/easy-es 项目背景:填补 Elasticsearch ORM 框架空白 在 Java 开发领域,Excel 和 Elasticsearch 的代码编写难度一直名列前茅,尤其是 Elasticsearch&a…

深入理解C#结构型设计模式:类适配器与对象适配器

一、设计模式的基本概念 设计模式是软件开发过程中针对反复出现的问题总结出来的通用解决方案。结构型设计模式主要关注如何将类或对象进行组合,以实现新的功能或满足特定的需求。适配器模式就是结构型设计模式中的一种,它允许将一个类的接口转换成客户…

阿里云cdn怎样设置图片压缩

阿里云 CDN 提供了图像加速服务,其中包括图像压缩功能。通过设置图片压缩,可以显著减小图片文件的体积,提升网站加载速度,同时减少带宽消耗。九河云来告诉你如何进行图片压缩吧。 如何设置阿里云 CDN 图片压缩? 1. 登…

BUCK电路的双脉冲测试

BUCK电路的双脉冲测试 第一步,由第一次开通脉冲代表,是初始调整的脉宽。这建立了电感中的电流。调整此脉冲以达到图 8 所示的所需测试电流(Id)。 第二步(2)是关闭第一个脉冲,这在续流二极管中产…

正则引入store中的modules文件

正则引入store中的modules文件 // index.js import { createStore } from vuex;const modulesFiles require.context(./modules, true, /\.ts|js$/); const modules modulesFiles.keys().reduce((modules1, modulePath) > {const moduleName modulePath.replace(/^\.\/(.…