神经网络常见激活函数 6-RReLU函数

news/2025/2/10 9:34:53/

文章目录

    • RReLU
      • 函数+导函数
      • 函数和导函数图像
      • 优缺点
      • pytorch中的RReLU函数
      • tensorflow 中的RReLU函数

RReLU

  • 随机修正线性单元:Randomized Leaky ReLU

函数+导函数

  • RReLU函数
    R R e L U = { x x ≥ 0 a x x < 0 \rm RReLU = \left\{ \begin{array}{} x \quad x \ge 0 \\ a x \quad x < 0 \end{array} \right. RReLU={xx0axx<0
    其中,( a ) 是一个在训练过程中随机从均匀分布 ( U(l, u) ) 中采样的值,( l ) 和 ( u ) 是预先设定的下界和上界,通常 ( 0 < l < u < 1 )。

  • RReLU函数导数
    d d x R R e L U = { 1 x ≥ 0 a x < 0 \frac{d}{dx} \rm RReLU = \left\{ \begin{array}{} 1 \quad x \ge 0 \\ a \quad x < 0 \end{array} \right. dxdRReLU={1x0ax<0
    在 RReLU 中,当 ( x < 0 ) 时,导数是一个随机变量 ( a ),这个随机变量在每次训练时都会从 ( U(l, u) ) 中重新采样。与 LeakyReLU 不同,RReLU 的斜率 ( a ) 是随机的,而不是固定的。


函数和导函数图像

  • 画图

    分为两张图了,上面是训练阶段,在训练阶段,负值部分的斜率P是随机从区间[lower, upper]中采样的。在测试阶段,负值部分的斜率P是区间[lower, upper]的平均值((lower + upper) / 2)

    import numpy as np
    from matplotlib import pyplot as plt# 定义 RReLU 函数
    def rrelu_train(x, lower=0.125, upper=0.333):P = np.random.uniform(lower, upper)  # 训练阶段:随机化负值部分的斜率return np.where(x < 0, P * x, x)def rrelu_test(x, lower=0.125, upper=0.333):P = (lower + upper) / 2  # 测试阶段:使用负值部分的平均斜率return np.where(x < 0, P * x, x)# 定义 RReLU 的导数
    def rrelu_derivative_train(x, lower=0.125, upper=0.333):P = np.random.uniform(lower, upper)  # 训练阶段:随机化负值部分的斜率return np.where(x < 0, P, 1)def rrelu_derivative_test(x, lower=0.125, upper=0.333):P = (lower + upper) / 2  # 测试阶段:使用负值部分的平均斜率return np.where(x < 0, P, 1)# 生成数据
    x = np.linspace(-2, 2, 1000)
    lower = 1/8  # 负值部分斜率的下限
    upper = 1/3  # 负值部分斜率的上限# 训练阶段
    y_train = [rrelu_train(xi, lower, upper) for xi in x]
    y1_train = [rrelu_derivative_train(xi, lower, upper) for xi in x]# 测试阶段
    y_test = [rrelu_test(xi, lower, upper) for xi in x]
    y1_test = [rrelu_derivative_test(xi, lower, upper) for xi in x]# 绘制图形
    fig, axs = plt.subplots(2, 1, figsize=(12, 12))# 训练阶段
    axs[0].plot(x, y_train, label='RReLU (Train)', color='blue')
    axs[0].plot(x, y1_train, label='Derivative (Train)', color='orange')
    axs[0].set_title(f'RReLU (Train) and Derivative (lower={lower}, upper={upper})')
    axs[0].legend(loc='upper left')
    axs[0].spines['right'].set_color('none')
    axs[0].spines['top'].set_color('none')
    axs[0].spines['bottom'].set_position(('data', 0))
    axs[0].spines['left'].set_position(('data', 0))# 测试阶段
    axs[1].plot(x, y_test, label='RReLU (Test)', color='blue', linestyle='--')
    axs[1].plot(x, y1_test, label='Derivative (Test)', color='orange', linestyle='--')
    axs[1].set_title(f'RReLU (Test) and Derivative (lower={lower}, upper={upper})')
    axs[1].legend(loc='upper left')
    axs[1].spines['right'].set_color('none')
    axs[1].spines['top'].set_color('none')
    axs[1].spines['bottom'].set_position(('data', 0))
    axs[1].spines['left'].set_position(('data', 0))plt.tight_layout()
    plt.show()
    

    image-20250205111957796


优缺点

  • RReLU函数相对于PeLU函数的改进
    1. RReLU函数和PReLU函数的表达式一样,但是参数 α \alpha α 不一样,这里的 α \alpha α 是个随机震荡的数,范围是 1 8 − 1 3 \frac{1}{8} - \frac{1}{3} 8131
    2. 负部分的斜率在训练中被随机化到给定的范围内,然后再测试中被固定。而PReLU训练中的斜率是训练出来的。
  • RReLU 的优点

    1. 缓解“死亡ReLU”问题:与ReLU不同,RReLU在负输入时引入了一个随机的斜率,这使得神经元不会因为负输入而完全失去梯度,从而避免了“死亡ReLU”问题。
    2. 增强梯度流:RReLU通过在负输入时提供一个非零梯度,有助于改善梯度消失问题,使得网络在训练过程中能够更好地更新权重。
    3. 增加模型的灵活性:RReLU的随机斜率在训练过程中可以动态调整,这增加了模型的灵活性和适应性,使其能够更好地处理复杂的模式。
    4. 提高模型的泛化能力:由于RReLU在训练时引入了随机性,这可以作为一种正则化手段,有助于提高模型的泛化能力。
  • RReLU 的缺点

    1. 计算复杂度增加:RReLU的随机斜率需要在每次训练时进行计算,这增加了计算复杂度和训练时间。
    2. 参数选择敏感:RReLU的随机斜率范围需要合理选择,如果选择不当,可能会导致模型训练不稳定。
    3. 测试时的确定性问题:在训练阶段,RReLU使用随机斜率,而在测试阶段,通常会使用一个固定的斜率(通常是训练阶段随机斜率的期望值)。这种从随机到确定性的转换可能会导致测试时的性能与训练时略有差异。
    4. 可能的过拟合风险:由于RReLU引入了额外的随机性,如果数据集较小或模型复杂度较高,可能会增加过拟合的风险。

pytorchRReLU_127">pytorch中的RReLU函数

  • 代码

    这里仅仅演示训练阶段 α \alpha α 为随机值的时候

    l o w e r = 1 / 8 \mathrm lower = 1/8 lower=1/8

    u p p e r = 1 / 3 \mathrm upper = 1/3 upper=1/3

    # 定义 RReLU 函数
    f = torch.nn.RReLU(lower=0.125,upper=0.333)  # PyTorch 提供的 RReLU 激活函数模块
    x = torch.randn(2)    # 生成一个随机张量作为输入rrelu_x = f(x)        # 应用 RReLU 函数print(f"x: \n{x}")
    print(f"rrelu_x:\n{rrelu_x}")"""输出"""
    

tensorflow 中的RReLU函数

  • 代码

    python: 3.10.9

    tensorflow: 2.18.0

    rrelu并不是tensorflow标准库的一部分,为此我们实现一个RReLU函数,包含训练阶段和推理阶段

    这里仅仅演示训练阶段 α \alpha α 为随机值的时候

    l o w e r = 1 / 8 \mathrm lower = 1/8 lower=1/8

    u p p e r = 1 / 3 \mathrm upper = 1/3 upper=1/3

    import tensorflow as tfclass RReLU(tf.keras.layers.Layer):def __init__(self, lower=0.125, upper=0.333, **kwargs):super(RReLU, self).__init__(**kwargs)self.lower = lowerself.upper = upperdef call(self, inputs, training=None):if training:# 在训练模式下,随机选择一个斜率alpha = tf.random.uniform(shape=inputs.shape, minval=self.lower, maxval=self.upper)else:# 在推理模式下,使用平均斜率alpha = (self.lower + self.upper) / 2.0return tf.where(inputs >= 0, inputs, alpha * inputs)# 创建 RReLU 激活函数
    rrelu = RReLU()# 生成随机输入
    x = tf.random.normal([2])# 应用 RReLU 激活函数
    rrelu_x = rrelu(x, training=True)print(f"x: \n{x}")
    print(f"rrelu_x:\n{rrelu_x}")"""输出"""
    x: 
    [-0.97807205  0.9327775 ]
    rrelu_x:
    [-0.26978785  0.9327775 ]
    


http://www.ppmy.cn/news/1570825.html

相关文章

【stm32学习】STM32F103实操primary2(FlyMCU)

单片机最小系统包括时钟电路、复位电路和电源电路 BootLoader其实就是烧写单片机的一个程序&#xff0c;是内置好的 杨桃建议把最小系统背下来&#xff0c;因为以后再自己设计单片机产品的时候是很重要的。 ↓keil。我电脑上的是keil μvision 5 keil使用方法&#xff1a; 找…

图解BWT(Burrows-Wheeler Transform) 算法

Burrows-Wheeler Transform (BWT) 是一种数据转换算法, 主要用于数据压缩领域. 它由 Michael Burrows 和 David Wheeler 在 1994 年提出, 广泛应用于无损数据压缩算法(如 bzip2)中. BWT 的核心思想是通过重新排列输入数据, 使得相同的字符更容易聚集在一起, 从而提高后续压缩算…

浏览器原理:渲染流程、重绘与回流,以及跨域解决方案

三个前端面试问题&#xff1a;渲染流程、重绘与回流&#xff0c;以及跨域解决方案。让我一个一个来思考如何组织这些内容。 首先是渲染流程&#xff0c;从输入URL到页面渲染的过程。我记得这个过程大致包括DNS解析、TCP连接、HTTP请求、服务器响应、浏览器解析和渲染等步骤。但…

网络安全 纵向是什么意思 网络安全维度

信息安全工程师-网络信息安全概述 网络信息安全相关概念 网络信息安全的发展历经了通信保密、计算机安全、信息保障、可信计算等阶段。狭义上的网络信息安全特指网络信息系统的各组成要素符合安全属性的要求&#xff0c;即机密性、完整性、可用性、抗抵赖性、可控性。广义上的…

vue3中使用print-js组件实现打印操作

第一步&#xff1a;安装依赖 yarn add print-js 第二步&#xff1a;创建打印组件&#xff1a;PrintHtmlComp.vue <template><div id"printArea_123456789"><!-- 默认插槽&#xff0c;传入打印内容 --><slot></slot></div>…

Android studio 编译速度增加

在gradle.properties增加如下代码&#xff0c;作用看注释 # Gradle 和 Kotlin 支持增量编译&#xff0c;只编译有改动的部分 kotlin.incrementaltrue # Gradle 支持并行构建&#xff0c;充分利用多核 CPU org.gradle.paralleltrue # Gradle 构建缓存可以缓存任务输出&#xff…

深度学习的图像生成

以下将分别使用 PyTorch 和 TensorFlow 实现基于深度学习的图像生成&#xff0c;这里主要介绍生成对抗网络&#xff08;GAN&#xff09;和变分自编码器&#xff08;VAE&#xff09;两种经典模型。 使用 PyTorch 实现简单的 GAN 进行图像生成 1. 安装必要的库 pip install to…

51单片机之使用Keil uVision5创建工程以及使用stc-isp进行程序烧录步骤

一、Keil uVision5创建工程步骤 1.点击项目&#xff0c;新建 2.新建目录 3.选择目标机器&#xff0c;直接搜索at89c52选择&#xff0c;然后点击OK 4.是否添加起吊文件&#xff0c;一般选择否 5.再新建的项目工程中添加文件 6.选择C文件 7.在C文件中右键&#xff0c;添加…