机器学习 - 需要了解的条件概率、高斯分布、似然函数

news/2025/2/12 19:44:15/

似然函数是连接数据与参数的桥梁,通过“数据反推参数”的逆向思维,成为统计推断的核心工具。理解它的关键在于区分“参数固定时数据的概率”与“数据固定时参数的合理性”,这种视角转换是掌握现代统计学和机器学习的基础。

一、在学习似然函数之前,我们需要弄懂什么是条件概率

概率是指在事件 B 已经发生的前提下,事件 A 发生的概率,记作 P(A|B),读作“在 B 发生的条件下 A 发生的概率”。其定义为:

其中,P(A ∩ B)表示事件 A 和事件 B 同时发生的概率,P(B) 表示事件 B 发生的概率。需要注意的是,P(B)必须大于零,否则条件概率无法定义。

示例:

一个标准的52张扑克牌堆,问从中随机抽取一张牌,这张牌是红心的概率是多少?这是一个无条件概率问题,答案(红心) = 13/52 = 1/4。

现在,假设已知抽到的牌是一张(或方片),在此条件下,这张牌是红心的条件概率是多少?这是一个条件概率问题。

设事件 A 为“抽到红心”,事件 B 为“抽到红色牌”,则:

  • P(A ∩ B) = P(红心) = 13/52
  • P(B) = P(红心或方片) = 26/52 = 1/2

因此,条件概率 P(A|B) 为:

需要注意的是,条件概率 P(A|B) 与 P(B|A) 一般不相等。例如,在上述例子中,P(红心|红色牌) = 1/2,而 P(红色牌|红心) = 1,因为在抽到红心的情况下,必然是一张红色牌。

条件概率在统计学、概率论以及机器学习等领域有广泛的应用,特别是在贝叶斯定理中,条件概率是核心概念之一。

二、还需要弄懂什么是高斯分布?

(一)高斯分布

高斯分布(也称为正态分布)是统计学中最常见的连续概率分布之一。其概率密度函数呈对称的钟形曲线,描述了数据在均值附近的集中程度。高斯分然科学和社会科学中广泛应用,常用于表示未知的随机变量。

概率密度函数

对于均值为 μ、标准差为 σ 的高斯分布,其概率密度函数为:

其中,μ 决定了分布的位置,σ 决定了分布的幅度。

标准正态分布: μ = 0、σ = 1 时,标准正态分布,其概率密度函数为:

性质:

  • **对称性:*斯分布关于均值 μ 对称。

  •  68-95-99.7 规则: 在高斯分布中,约68%的数据位于均值±1σ范围内,约95%位于均值±2σ范围内,约99.7%位于均值±3σ范围内。

在三维视图中,二维高斯分布的概率密度函数图像类似于一个倒置的碗,中心最高,向四周逐渐降低。其数学表达式为::

应用:

高斯分布在统计学中具有重要地位,常用于描述自然和社会科学中的随机变量。例如,在测量误差分析中,假设误差服从高斯分布可以简化分析过程。

此外,根据中心极限定理,当对大量独立同分布的随机变量求和时,其和的分布趋近于高斯分布,这使得高斯分布在统计推断中尤为重要。

需要注意的是,虽然高斯分布在理论和应用中广泛存在,但并非所有数据都服从高斯分布。在进行数据分析时,应首先检验数据的分布特性,以选择适当的统计模型。

为了直观理解,我们来看一下高斯分布对应的图像:

高斯分布(也称为正态分布)的图像呈现为对称的钟形曲线,其形状由均值(μ)和标准差(σ)决定。均值 μ 确定曲线的中心位置,标准差 σ 控制曲线的宽度和高度。标准差越小,曲线越陡峭;标准差越大,曲线越平坦。

(二)形象理解高斯分布

1. 直观比喻

想象你在测量一群人的身高:

  • 高斯分布:大部分人的身高集中在某个平均值附近(如170cm),极端高或矮的人较少。

  • 观测数据 y:每次测量的身高值(如169cm、171cm、168cm等)。

  • 假设 y 服从高斯分布:意味着这些测量值围绕某个“中心值”波动,且波动规律符合高斯分布的形状(钟形曲线)。

2. 具体场景

线性回归为例:

三、然后来掌握什么是似然函数

1.认识连乘运算符“∏”的用法:

2.了解独立同分布的意义:

概率论与统计学中,独立同分布(Independent and Identically Distributed,简称 i.i.d.)指一组随机变量彼此独立,且服从相同的概率分布。这意味着每个随机变量的取值不会影响其他变量的取值,并且它们具有相同的分布特性。

独立:随机变量之间互不影响,即一个变量的取值不依赖于其他变量的取值。

同分布:所有随机变量遵循相同的概率分布,具有相同的分布函数、期望值和方差等统计特性。

示例

  • 抛硬币实验:假设我们进行多次抛硬币实验,每次记录硬币正面朝上的结果。每次抛掷都是独立的(一次抛掷的结果不影响另一次),且每次抛掷的结果服从相同的分布(正面和反面的概率相同)。因此,这些抛掷结果构成一组独立同分布的随机变量。

  • 掷骰子实验:假设我们多次掷骰子,每次记录掷出的点数。每次掷骰子都是独立的,且每次的结果服从相同的分布(每个点数出现的概率相同)。因此,这些掷骰子的结果也是独立同分布的随机变量。

独立同分布是许多统计推断和机器学习方法的基础假设。例如,在训练机器学习模型时,通常假设训练数据是从同一分布中独立采样的,以确保模型对新数据的有效性。

需要注意的是,独立同分布并不意味着每个事件发生的概率都相同,而是指随机变量之间相互独立,并且遵循相同的概率分布。

3.认识似然函数

(1)似然函数的概念

给定一组独立同分布的数据样本 x1,x2,...,xn,假设它们服从高斯分布,则似然函数表示在给定参数(μ, σ²)下,观测到这组数据的概率。

由于对数函数是单调递增的,通常对似然函数取对数,得到对数似然函数:

通过最大化对数似然函数,可以估计参数μ和σ²的值。

因此,似然函数和高斯分布的关系在于,假设数据服从高斯分布时,似然函数基于高斯分布的概率密度函数构建,用于估计分布的参数。

定义:

似然函数是统计学中用来 “衡量模型参数在已知数据下的合理性” 的工具。简单来说,它通过观测到的数据,告诉我们 “不同参数值对产生这些数据的可能性有多大”

核心思想:逆向思维
  • 概率:已知参数 → 预测数据可能性
    (例:已知硬币是公平的(参数θ=0.5),抛10次出现6次正面的概率是多少?)

  • 似然:已知数据 → 推测参数可能性
    (例:抛10次硬币观察到6次正面,此时参数θ=0.5的“似然值”有多大?θ=0.6呢?)

类比

  • 概率:天气预报说“明天下雨的概率70%” → 预测未来。

  • 似然:今天下雨了 → 推测“气象台模型参数设置是否合理”。

数学形式

(2)如何理解“似然”

(3)最大似然估计(MLE

(4)关键区别:似然 vs 概率

(5)常见误区和实际应用场景:

  • 误区1:认为“似然值高”等于“参数正确”。
    → 实际只能说明“参数对当前数据更合理”。

  • 误区2:混淆似然函数与后验概率。
    → 后验概率 = 似然 × 先验概率(需贝叶斯框架)。

  • 误区3:忽略数据的独立性假设。
    → 若数据不独立,联合似然的乘积形式不成立。

  1. 参数估计:如线性回归、逻辑回归中的MLE。

  2. 模型选择:通过比较不同模型的似然值(如AIC准则)。

  3. 假设检验:构建似然比检验(Likelihood Ratio Test)。

这篇文章,我整理了学习最大似然估计之前的基础知识,在掌握了这些知识之后,我们下一步进行学习线性回归中,求最优参数的最大似然估计的方法。


http://www.ppmy.cn/news/1570730.html

相关文章

深度学习与搜索引擎优化的结合:DeepSeek的创新与探索

目录 引言 1. 传统搜索引擎的局限性 2. 深度学习在搜索引擎中的作用 3. DeepSeek 实现搜索引擎优化的关键技术 3.1 神经网络与搜索引擎优化 3.2 自然语言处理与查询理解 3.3 深度强化学习与搜索结果排序 4. DeepSeek的深度学习架构 4.1 查询解析与语义理解 4.2 搜索排名与相…

DeepSeek R1 Distill Llama 70B(免费版)API使用详解

DeepSeek R1 Distill Llama 70B(免费版)API使用详解 在人工智能领域,随着技术的不断进步,各种新的模型和应用如雨后春笋般涌现。今天,我们要为大家介绍的是OpenRouter平台上提供的DeepSeek R1 Distill Llama 70B&…

DeepSeek迁移学习与预训练模型应用

迁移学习是一种利用预训练模型的知识来加速新任务训练的技术。通过迁移学习,我们可以在数据量有限的情况下,快速构建高性能的模型。DeepSeek提供了丰富的预训练模型和迁移学习工具,帮助我们高效地完成新任务的训练。本文将详细介绍如何使用DeepSeek进行迁移学习,并通过代码…

C语言时间相关宏定义

在C语言中,预处理器提供了一些与时间相关的宏定义,用于在编译时获取日期、时间等信息。除了 __TIMESTAMP__ 和 __DATE__,还有以下相关的宏定义: __DATE__ 当前编译日期的字符串,格式为 "Mmm dd yyyy"&#x…

上传文件防木马函数

项目环境:TP6、TP5 问题:解决旧项目中上传上来的文件校验不严格。导致会有木马文件入侵的情况发生。除了上篇博文中提及的限制上传文件存储的目录不可执行php文件外。仍需在入口处严格检验上传文件的类型,排除php类可执行文件上传。 解决&a…

【漫话机器学习系列】084.偏差和方差的权衡(Bias-Variance Tradeoff)

偏差和方差的权衡(Bias-Variance Tradeoff) 1. 引言 在机器学习模型的训练过程中,我们常常面临一个重要的挑战:如何平衡 偏差(Bias) 和 方差(Variance),以提升模型的泛…

【杂谈】-文明的量子跃迁:AI时代人类物种的自我重构

文章目录 文明的量子跃迁:AI时代人类物种的自我重构一、文明基因的双螺旋进化二、意识矩阵的拓扑重构三、伦理穹顶下的共生协议 文明的量子跃迁:AI时代人类物种的自我重构 在撒哈拉沙漠的岩壁上,史前人类用赭石颜料绘制出羚羊与猎人的身影&a…

接入 deepseek 实现AI智能问诊

1. 准备工作 注册 DeepSeek 账号 前往 DeepSeek 官网 注册账号并获取 API Key。 创建 UniApp 项目 使用 HBuilderX 创建一个新的 UniApp 项目(选择 Vue3 或 Vue2 模板)。 安装依赖 如果需要在 UniApp 中使用 HTTP 请求,推荐使用 uni.requ…