深度学习之“线性代数”

news/2025/2/7 8:15:42/

线性代数深度学习中是解决多维数学对象计算问题的核心工具。这些数学对象包括标量、向量、矩阵和张量,借助它们可以高效地对数据进行操作和建模。以下将详细介绍这些数学对象及其在深度学习中的典型用途。

数学对象概述

标量

标量是最简单的数学对象,通常表示单个数值变量,是构成高阶数据结构的基础。例如:

python">import numpy as np
x = 42  # 标量
print(x)

向量

向量由标量组成,表示为一维数组。根据表示方式不同,可以分为行向量和列向量。在深度学习中,向量常用于描述样本的多个特征。例如:

python">import numpy as np
x = np.array([1,2,3])
print(x)
print(x.shape)
print(x.reshape((3,1)))

在这里插入图片描述

深度学习和机器学习中,向量的各个成员之间通常用于描述样本不同的特征。模型可以通过输入的这些特征量得到有用的输出,如分类标签或者是回归值。

矩阵

矩阵是由数字构成的二维数组。在矩阵中,各个元素所处的行数和列数为元素的下标。在python语言中,数组的下标是从0开始的,而在matlab语言中,数组的下标从1开始,不同语言的特点不同,需要注意。此外,在矩阵中,元素的位置由行和列索引确定。

python">import numpy as np
A = np.arange(12).reshape((3,4))
print(A)
print(A[1,2])
print(A[0,0])

在这里插入图片描述

此外,我们可以看到除开头可结尾的[]外,每一行的数据都由一组[]包括着,这说明numpy将二维数组当作行向量来对待,其中每一个元素也为一个行向量。

张量

张量是更高维的数组,超越矩阵的二维结构。例如,在计算机视觉中,RGB图像可以表示为形状为chw的三维张量,其中c表示通道数,h和w分别表示图像的高度和宽度。加上批量(batch size)维度后,形成四维张量。然而,不同框架可能对张量的维度顺序有不同约定,例如 ONNX 通常使用hwc。示例代码如下:

python">import numpy as np
t = np.arange(36).reshape(3,3,4)
print(t)

在这里插入图片描述

在计算机视觉模型推理阶段,尽管我们通常输入的是一张三维图片,但模型的输入通常还需要一个最高维度的批量大小(通常默认为1)。那么,如何对输入进行转换,将其扩展为四维数据呢?以下介绍两种方法,通过增加一个大小为1的维度来实现这一转换。

python">t = np.arange(36).reshape(3,3,4)
w = t[np.newaxis,:,:,:]
w2 = np.expand_dims(t,axis=0)
print(w.shape)
print(w2.shape)
print(w)
print(w2)

在这里插入图片描述

代数运算

本节主要设计向量和矩阵的计算

数组运算

标量运算中的加减乘除,以及指数等初等运算都适用于数组运算。当两个运算数组形状相同时,可以简单理解为对应位置上的元素进行运算。

python">import numpy as np
a = np.array([[1,2,3],[4,5,6]])
b = np.array([[7,8,9],[10,11,12]])
print(a+b)
print(a-b)
print(a*b)
print(a/b)

在这里插入图片描述

当两个数组形状不匹配时,就会涉及到NumPy的广播机制。举个例子,假设有三个人,第一个人分别拥有1个梨、2个苹果、3个香蕉和4个橘子;第二个人各类水果的数量是第一个人的两倍,第三个人则是第一个人的三倍。我们可以利用NumPy的广播机制,轻松地表示出每个人每种水果的拥有量。

python">import numpy as np
a = np.array([1,2,3,4])
b = np.array([[1],[2],[3]])
print(a*b)

在这里插入图片描述

其中行为4种水果,列为3个人。

向量运算

单位向量

将一个向量中的各个元素除以向量的模长,我们就能得到一个方向不变且模值为1的单位向量。

python">import numpy as np
v = np.array([2,-4,3])
print(v / np.sqrt((v*v).sum()))
print(v / np.sqrt(np.dot(v,v)))

在这里插入图片描述

我们既可以使用各元素平方求和开根号的方式来求得向量的模长,也可以使用内积的方式来得到。

内积

向量内积是最基础的向量运算,其计算方法如下
在这里插入图片描述

在这里插入图片描述

向量内积的结果是一个标量。向量内积满足交换律和分配律,但是不满足结合律。且内积为0的两个向量相互正交,它们之间的夹角为90°。

外积

与向量内积不同,两个向量的外积得到的是一个矩阵。个人理解,可以用前面的广播机制来理解它。向量的外积不要求两个向量具有相同数量的元素

python">a = np.array([1,2,3,4])
b = np.array([5,6,7])
print(np.outer(a,b))

在这里插入图片描述

叉积

叉积是定义在三维空间中的,两个向量叉积的结果是一个新的向量,这个向量垂直于这两个向量构成的平面。新向量的方向服从右手法则。
在这里插入图片描述

python">import numpy as np
a = np.array([1,0,0])
b = np.array([0,1,0])
c = np.array([1,1,0])
print(np.cross(a,b))
print(np.cross(a,c))

在这里插入图片描述

总结

线性代数深度学习的基础,其数学对象和运算在数据表示和模型计算中无处不在。掌握这些基本概念和操作,将为理解和优化深度学习模型提供有力支持。


http://www.ppmy.cn/news/1570022.html

相关文章

C++底层学习预备:模板初阶

文章目录 1.编程范式2.函数模板2.1 函数模板概念2.2 函数模板原理2.3 函数模板实例化2.3.1 隐式实例化2.3.2 显式实例化 2.4 模板参数的匹配原则 3.类模板希望读者们多多三连支持小编会继续更新你们的鼓励就是我前进的动力! 进入STL库学习之前我们要先了解有关模板的…

八大排序算法细讲

目录 排序 概念 运用 常见排序算法 插入排序 直接插入排序 思想: 步骤(排升序): 代码部分: 时间复杂度: 希尔排序 思路 步骤 gap的取法 代码部分: 时间复杂度: 选择排序 直接选…

【SQL技术】不同数据库引擎 SQL 优化方案剖析

一、引言 在数据处理和分析的世界里,SQL 是不可或缺的工具。不同的数据库系统,如 MySQL、PostgreSQL(PG)、Doris 和 Hive,在架构和性能特点上存在差异,因此针对它们的 SQL 优化策略也各有不同。这些数据库中…

Linux 源码编译安装httpd 2.4,提供系统服务管理脚本并测试

第一种方式 1. 下载 Apache HTTP Server 源代码 首先,从 Apache 官网 下载最新版本的 httpd 2.4 源码,或者直接使用 wget 下载: [rootlocalhost ~]# wget https://downloads.apache.org/httpd/httpd-2.4.36.tar.gz # 解压 [rootlocalhost ~…

javaEE-8.JVM(八股文系列)

目录 一.简介 二.JVM中的内存划分 JVM的内存划分图: 堆区:​编辑 栈区:​编辑 程序计数器:​编辑 元数据区:​编辑 经典笔试题: 三,JVM的类加载机制 1.加载: 2.验证: 3.准备: 4.解析: 5.初始化: 双亲委派模型 概念: JVM的类加…

算法设计与分析三级项目--管道铺设系统

摘 要 该项目使用c算法逻辑,开发环境为VS2022,旨在通过Prim算法优化建筑物间的连接路径,以支持管线铺设规划。可以读取文本文件中的建筑物名称和距离的信息,并计算出建筑物之间的最短连接路径和总路径长度,同时以利用…

Java语法糖详解

前言 在现代编程语言的发展历程中,语法糖(Syntactic Sugar)作为一种提升代码可读性和开发效率的重要特性,已经成为语言设计的重要组成部分。Java作为一门成熟且广泛应用的编程语言,在其长期演进过程中,语法…

Python——Unicode 编码 或 解码 工具(GUI打包版)

目录 专栏导读1、代码背景2、库的安装3、核心代码4、完整代码总结专栏导读 🌸 欢迎来到Python办公自动化专栏—Python处理办公问题,解放您的双手 🏳️‍🌈 博客主页:请点击——> 一晌小贪欢的博客主页求关注 👍 该系列文章专栏:请点击——>Python办公自动化专…