国产SiC碳化硅功率器件技术成为服务器电源升级的核心引擎

news/2025/2/6 10:12:31/

服务器电源应用中,国产650V碳化硅(SiC)MOSFET逐步取代传统超结(Super Junction, SJ)MOSFET,其核心驱动力源于SiC材料在效率、功率密度、可靠性和长期经济性上的显著优势,叠加产业链成熟与政策支持。倾佳电子杨茜从多维度解析这一趋势:

倾佳电子杨茜致力于推动SiC碳化硅模块在电力电子应用中全面取代IGBT模块,助力电力电子行业自主可控和产业升级!

倾佳电子杨茜咬住SiC碳化硅MOSFET功率器件三个必然,勇立功率半导体器件变革潮头:

倾佳电子杨茜咬住SiC碳化硅MOSFET模块全面取代IGBT模块的必然趋势!

倾佳电子杨茜咬住SiC碳化硅MOSFET单管全面取代IGBT单管的必然趋势!

倾佳电子杨茜咬住650V SiC碳化硅MOSFET单管全面取代SJ超结MOSFET和高压GaN 器件的必然趋势!


一、技术性能的颠覆性提升

高频高效与损耗优化

导通损耗:SiC的临界击穿电场强度(3MV/cm)是硅的10倍,使得650V SiC MOSFET的比导通电阻(Rsp​)更低(可低于3mΩ·cm²),尤其在高温下性能稳定。而超结MOSFET的导通电阻随温度升高显著增加,导致服务器电源在满载时效率下降。

开关损耗:SiC的电子饱和漂移速度是硅的2倍,开关速度更快(纳秒级),开关损耗(Esw​)仅为超结器件的1/4~1/3。高频化(200kHz以上)可显著减少磁性元件(如电感、变压器)体积,提升功率密度至300W/in³以上,满足数据中心机架空间严苛需求。

高温稳定性与散热简化

SiC热导率(4.9 W/cm·K)为硅的3倍,结合双面散热封装(如AMB基板),结温可稳定运行在175℃以上,降低散热系统复杂度。服务器电源长期高负载运行时,SiC器件无需额外液冷设计,节省成本。

超结MOSFET在高温下易发生热失控,需复杂风冷或散热片,占用空间且增加故障风险。


二、系统级能效与经济性优势

电能转换效率突破

服务器电源典型拓扑(如LLC谐振、图腾柱PFC)中,SiC MOSFET通过零电压开关(ZVS)和零电流开关(ZCS)技术,将整机效率提升至96%~98%(钛金能效标准),相比超结方案提升2%~3%。以10MW数据中心为例,年省电费可达数百万元。

超结MOSFET受限于反向恢复电荷(Qrr​)和体二极管性能,高频下效率瓶颈明显。

全生命周期成本优化

目前国产650V SiC MOSFET价格已经持平甚至低于超结器件,采用碳化硅器件服务器电源系统级成本因高频化减少30%磁性元件、50%散热成本,整体BOM成本持平。长期运营中,效率提升带来的电费节省(OPEX)带来更强的产品竞争力。

超结MOSFET依赖传统硅基产线,受材料限制和天花板,成本优势逐渐消失。


三、产业链成熟与国产化替代

本土供应链自主可控

国内已实现6英寸SiC衬底量产(天岳先进、天科合达),外延片良率超90%,器件成本较2023年下降40%。

超结MOSFET核心技术(如CoolMOS)受专利壁垒限制。

封装与驱动技术突破

国产SiC MOSFET(比如BASiC基本股份)采用铜线键合、银烧结等先进封装工艺,支持TO-247、DFN8x8等标准封装,兼容现有超结MOSFET焊盘设计,无需改板即可升级。

集成化驱动芯片解决SiC高速开关带来的栅极振荡问题,确保服务器电源EMI符合CISPR 32标准。

BASiC基本股份针对多种应用场景研发推出门极驱动芯片,可适应不同的功率器件和终端应用。BASiC基本股份的门极驱动芯片包括隔离驱动芯片和低边驱动芯片,绝缘最大浪涌耐压可达8000V,驱动峰值电流高达正负15A,可支持耐压1700V以内功率器件的门极驱动需求。

BASiC基本股份低边驱动芯片可以广泛应用于PFC、DCDC、同步整流,反激等领域的低边功率器件的驱动或在变压器隔离驱动中用于驱动变压器,适配系统功率从百瓦级到几十千瓦不等。

BASiC基本股份推出正激 DCDC 开关电源芯片BTP1521xx,该芯片集成上电软启动功能、过温保护功能,输出功率可达6W。芯片工作频率通过OSC 脚设定,最高工作频率可达1.5MHz,非常适合给隔离驱动芯片副边电源供电。


四、政策与市场需求驱动

“双碳”目标与能效标准升级

《数据中心能效限定值及能效等级》(GB 40879-2021)要求新建大型数据中心PUE低于1.3,推动高效SiC方案普及。欧盟ErP指令亦将服务器电源效率门槛提升至钛金级,倒逼超结方案退出。

由于算力需求,GPU CPU功耗持续增加,电源需支持更高功率密度,SiC成为唯一可行选择。

头部厂商示范效应

头部服务器电源采用国产650V SiC MOSFET,效率达98%,功率密度较上一代提升50%,适配液冷超算中心。

头部厂商计划2025年全面切换至SiC方案,超结MOSFET订单量逐年递减。


五、典型应用场景与案例

48V DC/DC转换器:SiC MOSFET将48V转12V的效率从95%提升至97%,单模块功率密度达500W/in³,支持GPU集群供电。

三相PFC整流器:图腾柱无桥PFC拓扑中,SiC器件实现99%效率,THD<5%,满足国标GB 17625.1谐波要求。


六、挑战与未来趋势

长期展望

2025年后,8英寸SiC晶圆量产将推动成本再降30%,SiC MOSFET在服务器电源渗透率有望超80%。

超结MOSFET将退守低端市场(如消费电子适配器),彻底退出高性能电源领域。


总结

国产650V SiC MOSFET(比如BASiC基本股份)在服务器电源中对超结MOSFET的全面替代,是材料革命、能效升级与供应链自主化的必然结果。其高频高效、高温可靠及系统级成本优势,完美契合数据中心对绿色化、高密度的需求。随着国产产业链从“跟跑”转向“领跑”,国产SiC碳化硅功率半导体技术成为自主可控服务器电源升级的核心引擎。


http://www.ppmy.cn/news/1569767.html

相关文章

React开发中箭头函数返回值陷阱的深度解析

React开发中箭头函数返回值陷阱的深度解析 一、箭头函数的隐式返回机制&#xff1a;简洁背后的规则二、块函数体中的显式返回要求&#xff1a;容易被忽视的细节三、真实场景下的案例分析案例1&#xff1a;忘记return导致组件渲染失败案例2&#xff1a;异步操作中的返回值陷阱 四…

吴恩达深度学习——卷积神经网络基础

本文来自https://www.bilibili.com/video/BV1FT4y1E74V&#xff0c;仅为本人学习所用。 文章目录 矩阵和张量边缘检测计算方式检测原理 Valid卷积和Same卷积卷积步长三维卷积单层卷积网络总结符号定义输入输出维度其他参数维度 举例 池化层示例输入层第一层卷积 - 池化第二层卷…

本地安装部署deepseek

在截图下载工具(地址不方便粘贴过不审核)复制安装程序链接下载模型管理工具ollama&#xff0c;下一步下一步&#xff0c;有需要也可以下载linux版的 githup&#xff1a;https://github.com/ollama/ollama/releases/tag/v0.5.7 安装程序&#xff1a;https://github.com/ollama…

java程序员面试自身优缺点,详细说明

程序员面试大厂经常被问到的Java异常机制问题,你搞懂了吗运行时异常:运行时异常是可能被程序员避免的异常。与检查性相反,运行时异常可以在编译时被忽略。错误(ERROR):错误不是异常,而是脱离程序员控制的问题。错误通常在代码中容易被忽略。例如:当栈溢出时,一个错误就发生了,它…

Vue 2 与 Vue 3 的主要区别

Vue.js 是一个流行的前端框架&#xff0c;用于构建用户界面和单页应用。自从 Vue 2 发布以来&#xff0c;社区对其进行了广泛的应用和扩展&#xff0c;而 Vue 3 的发布则带来了许多重要的改进和新特性。 性能提升 Vue 3 在响应式系统上进行了重大的改进&#xff0c;采用了基于…

Node.js 和 npm 安装教程

Node.js 和 npm 安装教程 Node.js 和 npm 安装教程什么是 Node.js 和 npm&#xff1f;Node.jsnpm 安装前的注意事项在 Windows 上安装 Node.js 和 npm步骤 1&#xff1a;访问 Node.js 官网步骤 2&#xff1a;选择适合的版本步骤 3&#xff1a;下载安装包步骤 4&#xff1a;运行…

第五章 Linux网络编程基础API

在网络编程中&#xff0c;“网络字节序”&#xff08;Network Byte Order&#xff09;指的是一种统一的字节排列方式&#xff0c;即大端字节序&#xff08;Big-Endian&#xff09;&#xff0c;用于在网络上传输数据。这样做的目的是确保不同主机之间&#xff08;可能采用不同的…

第 2 天:创建你的第一个 UE5 C++ 项目!

&#x1f3af; 目标&#xff1a; 掌握 UE5 C 项目的创建流程&#xff0c;了解代码结构&#xff0c;并成功运行第一个 C 类&#xff01; 1️⃣ 创建 UE5 C 项目 在 UE5 中&#xff0c;C 项目可以与蓝图&#xff08;Blueprint&#xff09;结合使用&#xff0c;让游戏逻辑更灵活…