人工智能例子汇总:AI常见的算法和例子-CSDN博客
半监督学习(Semi-Supervised Learning,SSL)结合了有监督学习和无监督学习的特点,通常用于部分数据有标签、部分数据无标签的场景。其主要步骤如下:
1. 数据准备
- 有标签数据(Labeled Data):数据集的一部分带有真实的类别标签。
- 无标签数据(Unlabeled Data):数据集的另一部分没有标签,仅有特征信息。
- 数据预处理:对数据进行清理、标准化、特征工程等处理,以保证数据质量。
2. 选择半监督学习方法
常见的半监督学习方法包括:
- 基于生成模型(Generative Models):如高斯混合模型(GMM)、变分自编码器(VAE)。
- 基于一致性正则化ÿ