Airflow:深入理解Apache Airflow Task

news/2025/2/1 23:48:11/

Apache Airflow是一个开源工作流管理平台,支持以编程方式编写、调度和监控工作流。由于其灵活性、可扩展性和强大的社区支持,它已迅速成为编排复杂数据管道的首选工具。在这篇博文中,我们将深入研究Apache Airflow 中的任务概念,探索不同类型的任务,如何创建它们,以及各种最佳实践。
在这里插入图片描述

Airflow任务介绍

任务是Airflow工作流(也称为有向无环图或DAG)中最小的工作单元。任务表示单个操作、功能或计算,是更大工作流的一部分。在数据管道上下文中,任务可能包括数据提取、转换、加载或任何其他数据处理操作。

任务类型

Apache Airflow中的三种基本任务类型:操作员,传感器和taskflow装饰任务。

  1. Operators

Operator是预定义的任务模板,可以很容易地组合起来创建大多数dag。它们代表单一的工作或操作单元,并且气流具有广泛的内置Operator,以适应各种应用场景。

  1. Sensors

Sensor是Operator的一个独特子类,它专注于在继续工作流程之前等待外部事件的发生。传感器对于确保在任务开始执行之前满足某些条件是必不可少的。

  1. TaskFlow-decorated任务

TaskFlow是在Airflow 2.0中引入的新特性,它支持使用@task装饰器将Python函数打包为任务,从而简化了创建自定义任务的过程。这种方法允许你在dag内定义内联任务,从而提高了代码的可重用性和可读性。

创建任务

要创建任务,请实例化操作符并提供所需的参数。下面是使用PythonOperator创建任务的示例:

from airflow import DAG 
from airflow.operators.python import PythonOperator 
from datetime import datetime def my_function(): print("Hello, Airflow!") dag = DAG( 'my_dag', start_date=datetime(2023, 4, 5), schedule_interval='@daily' ) task = PythonOperator( task_id='my_task', python_callable=my_function, dag=dag ) 

my_function 是Python普通函数,通过python_callable参数赋值,把python函数转为Airflow任务。

任务依赖关系

DAG中的任务可以具有依赖关系,这些依赖关系定义了它们执行的顺序。要设置依赖关系,可以使用set_upstream()和set_downstream()方法或bitshift操作符(<<和>>):

task_a = DummyOperator(task_id='task_a', dag=dag) 
task_b = DummyOperator(task_id='task_b', dag=dag) task_a.set_downstream(task_b) 
# or 
task_a >> task_b 

任务重试和失败处理

Airflow支持配置重试次数和任务重试之间的延迟。这可以在创建任务时使用retries和retry_delay参数来完成:

from datetime import timedelta task = PythonOperator( task_id='my_task', python_callable=my_function, retries=3, retry_delay=timedelta(minutes=5), dag=dag 
) 

任务最佳实践

以下是一些在Apache Airflow中处理任务的最佳实践:

  1. 保持任务幂等:确保任务在给定相同输入的情况下产生相同的输出,而不管它们执行了多少次。
  2. 使任务更小、更集中:将复杂的任务分解成更小、更易于管理的单元。
  3. 使用任务模板和宏:利用Jinja模板和Airflow宏使任务更具动态性和可重用性。
  4. 监控和记录任务性能:利用Airflow的内置监控和记录功能来密切关注任务性能并解决任何问题。
  5. 定义任务超时时间:为您的任务设置适当的超时时间,以防止它们无限期运行并消耗资源。
  6. 在任务之间使用XCom进行通信:Airflow的XCom功能允许任务交换少量数据。将此功能用于任务间通信,而不是依赖于外部存储或全局变量。
  7. 测试你的任务:编写任务单元测试,以确保它们按预期工作,并在开发过程的早期发现任何问题。
  8. 编写任务文档:给任务添加清晰简洁的文档,解释它们做什么,以及它们的行为或配置的任何重要细节。

最后总结

任务是Apache Airflow中的基本构建块,使您能够通过组合各种Operator和配置来创建强大而灵活的工作流。通过遵循本文中概述的最佳实践并利用Airflow提供的众多特性,你可以创建高效、可维护且可靠的数据管道。


http://www.ppmy.cn/news/1568546.html

相关文章

C#操作GIF图片(上)

见过不少人、经过不少事、也吃过不少苦&#xff0c;感悟世事无常、人心多变&#xff0c;靠着回忆将往事串珠成链&#xff0c;聊聊感情、谈谈发展&#xff0c;我慢慢写、你一点一点看...... 将一个GIF动态图分割成一帧一帧的图片 string savePath Application.StartupPath &qu…

微信小程序1.3 开发工具的使用

内容提要 1.1 创建项目 1.2 开发者工具界面 1.3 模拟器区域 创建项目 开发者工具界面 模拟器区域

关于opencv环境搭建问题:由于找不到opencv_worldXXX.dll,无法执行代码,重新安装程序可能会解决此问题

方法一&#xff1a;利用复制黏贴方法 打开opencv文件夹目录找到\opencv\build\x64\vc15\bin 复制该目录下所有文件&#xff0c;找到C:\Windows\System32文件夹&#xff08;注意一定是C盘&#xff09;黏贴至该文件夹重新打开VS。 方法二&#xff1a;直接配置环境 打开opencv文…

(笔记+作业)书生大模型实战营春节卷王班---L0G2000 Python 基础知识

学员闯关手册&#xff1a;https://aicarrier.feishu.cn/wiki/QtJnweAW1iFl8LkoMKGcsUS9nld 课程视频&#xff1a;https://www.bilibili.com/video/BV13U1VYmEUr/ 课程文档&#xff1a;https://github.com/InternLM/Tutorial/tree/camp4/docs/L0/Python 关卡作业&#xff1a;htt…

FastExcel使用详解

文章目录 FastExcel使用详解一、引言二、环境准备与依赖引入1、Maven 依赖引入2、实体类定义 三、核心操作&#xff1a;读写 Excel1、读取 Excel1.1 自定义监听器1.2 读取文件 2、写入 Excel2.1 简单写入2.2 模板写入 四、Spring Boot 集成示例1、文件上传&#xff08;导入&…

YOLOv8:目标检测与实时应用的前沿探索

随着深度学习和计算机视觉技术的迅速发展&#xff0c;目标检测&#xff08;Object Detection&#xff09;一直是研究热点。YOLO&#xff08;You Only Look Once&#xff09;系列模型作为业界广受关注的目标检测框架&#xff0c;凭借其高效、实时的特点&#xff0c;一直迭代更新…

多模态论文笔记——VDT

大家好&#xff0c;这里是好评笔记&#xff0c;公主号&#xff1a;Goodnote&#xff0c;专栏文章私信限时Free。本文详细解读多模态论文《VDT》&#xff0c;首次在视频扩散的生成模型中使用Transformer&#xff0c;这和后面的Sora架构最接近。 文章目录 论文摘要1 引言近期研究…

解锁罗技键盘新技能:轻松锁定功能键(罗技K580)

在使用罗技键盘的过程中&#xff0c;你是否曾因 F11、F12 功能键的默认设置与实际需求不符而感到困扰&#xff1f; 别担心&#xff0c;今天就为大家分享一个简单实用的小技巧 —— 锁定罗技键盘的 F11、F12 功能键&#xff0c;让你的操作更加得心应手&#xff01; 通常情况下…