论文信息
标题: Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks
论文链接: https://arxiv.org/pdf/2303.03667
GitHub链接: https://github.com/JierunChen/FasterNet
创新点
该论文的核心创新在于提出了一种新的运算符——部分卷积(PConv),旨在提高神经网络的每秒浮点操作数(FLOPS),从而实现更快的推理速度。研究表明,传统方法往往专注于减少浮点运算(FLOPs),但这并不一定能有效降低延迟。相反,提升FLOPS的效率才是实现快速神经网络的关键。
方法
论文中提出的PConv运算符通过以下方式优化了神经网络的性能:
-
减少冗余计算: PConv仅对部分输入通道应用卷积操作,而保留其他通道不变,从而降低了计算复杂度。
-
优化内存访问: 通过减少频繁的内存访问,PConv提高了计算效率,特别是在深度卷积(DWConv)中表现尤为明显。
-
设计理念: 该方法强调在保持较低FLOPs的同时,提升FLOPS,以实现更高的计算速度和更低的延迟。
效果
实验结果显示,使用FasterNet架构的模型在多个基准测试中表现出色:
-
速度提升: FasterNet-T0在GPU、CPU和ARM处理器上的速度分别比MobileViT-XXS快2.8倍、3.3倍和2.4倍。
-
准确率提高: 在ImageNet-1k数据集上,FasterNet-L模型达到了83.5%的Top-1准确率,与Swin-B相当,同时在GPU上提高了36%的推理吞吐量,并在CPU上节省了37%的计算时间。
实验结果
论文通过一系列实验验证了PConv的有效性,结果表明:
-
FLOPS与延迟的关系: 许多现有网络的FLOPS较低,导致它们在实际应用中并不够快。PConv的引入有效解决了这一问题。
-
与其他模型的比较: FasterNet在速度和准确性上超越了其他主流目标检测器,如YOLOv7,显示出其在实际应用中的优势。
总结
论文《Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks》通过引入部分卷积(PConv)运算符,成功提升了神经网络的计算效率,强调了FLOPS的重要性。研究表明,单纯减少FLOPs并不能有效降低延迟,而提升FLOPS才是实现快速神经网络的关键。FasterNet的实验结果验证了这一理论,为未来的神经网络设计提供了新的思路和方法。
代码
import torch
from torch import nn
from torch import Tensorclass Partial_conv3(nn.Module):def __init__(self, dim, n_div, forward):super().__init__()self.dim_conv3 = dim // n_divself.dim_untouched = dim - self.dim_conv3self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False)if forward == 'slicing':self.forward = self.forward_slicingelif forward == 'split_cat':self.forward = self.forward_split_catelse:raise NotImplementedErrordef forward_slicing(self, x: Tensor) -> Tensor:# only for inferencex = x.clone() # !!! Keep the original input intact for the residual connection laterx[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :])return xdef forward_split_cat(self, x: Tensor) -> Tensor:# for training/inferencex1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1)x1 = self.partial_conv3(x1)x = torch.cat((x1, x2), 1)return xif __name__ == "__main__":# 如果GPU可用,将模块移动到 GPUdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 输入张量 (batch_size, channels, height, width)x = torch.randn(1,32,40,40).to(device)# 初始化 pconv 模块dim=32block = Partial_conv3(dim,n_div=4,forward='slicing')print(block)block = block.to(device)# 前向传播output = block(x)print("输入:", x.shape)print("输出:", output.shape)
输出结果: