面向长文本的多模型协作摘要架构:多LLM文本摘要方法

news/2025/1/30 10:27:29/

多LLM摘要框架在每轮对话中包含两个基本步骤:生成和评估。这些步骤在多LLM分散式摘要和集中式摘要中有所不同。在两种策略中,k个不同的LLM都会生成多样化的文本摘要。然而在评估阶段,多LLM集中式摘要方法使用单个LLM来评估摘要并选择最佳摘要,而分散式多LLM摘要则使用k个LLM进行评估。

论文提出的方法旨在处理长文本文档输入,这类文档可能包含数万字,通常超出大多数标准LLM的上下文窗口限制,论文建立了一个两阶段处理流程:首先将源文档分块,独立summarize每个源文档块,然后对连接后的中间结果进行第二轮分块和摘要。在这两个阶段中,两种框架都允许多个LLM协作,最终收敛到一个高质量的完整原始参考文档摘要。

集中式多LLM摘要

单轮处理

每个LLM接收一次提示,生成各自的摘要。然后通过单一评估步骤选择最佳的最终摘要。

在单轮设置中,每个参与模型列表中的LLM都使用相同的提示P独立生成输入文本的摘要。对于每个LLM Mj ∈ M,输出为Sj = Mj(P,S),其中S表示输入文本。对所有Mj运行此步骤会得到一组摘要S = {S1,…,Sk}。从概念上讲,每个模型都贡献其独特的视角,产生多样化的候选摘要池,这对后续评估阶段的稳健摘要选择非常重要。

在收集候选摘要集S后,中央代理C ∈ M对这些摘要进行评估。中央LLM C使用评估提示Pec来评估每个摘要的质量。形式上表示为E = C(Pec, S),其中E是中央LLM对所有候选摘要的评估。这包括选择最佳摘要(以其匿名标识符表示)以及该评估的置信度分数(以0到10的整数表示)。将标识符去匿名化以恢复所选摘要Sj的文本,并将其设置为最终输出S*。在单轮机制中,此时终止流程,不再进行后续迭代。

对话式处理

生成和评估阶段会重复多次。每个生成-评估过程定义为一轮,并定义了流程结束或开始新一轮的条件,直到达到最大轮次。

对话式处理的第一轮与单轮程序相似。每个LLM Mj使用提示P从原始输入文本S生成初始摘要S(1)j:S(1) = Mj(P,S)。如果上一轮评估结果的置信度分数低于阈值,或者LLM未能输出可读的置信度分数,流程将进入下一轮。在第二轮及后续轮次中,使用提示P(i)。后续轮次中的LLM可以访问待摘要文本和上一轮的摘要。具体来说,在第i轮(i > 1):S(i)j = Mj(P(i),S)。

第i轮(i > 1)的评估阶段在概念上与单轮设置相似,但现在是对生成阶段刚刚产生的候选摘要Si = {S1(i), …, Sk(i)}进行操作。中央LLM C使用Pec评估这些候选摘要:E(i) = C(Pec, Si)。如果置信度达到阈值,流程终止,中央LLM选择的摘要被接受为S*。否则,流程进入下一轮摘要生成和评估。

分散式多LLM摘要

单轮处理

生成程序与集中式方法相同。多个LLM独立生成输入文本的摘要,获得摘要列表S = {S1,…,Sk}。

在评估阶段,每个生成摘要的模型都会收到一个新的评估提示,该提示不包含置信度,并收到待摘要文本以及包括自己在内的所有代理生成的摘要。形式上,收集模型偏好E(i),…,E(i),其中每个E(i)代表模型Mj对S(i),…,S(i)中最佳摘要的选择。当大多数模型选择相同的摘要时,即达成收敛。当没有出现多数选择时,在单轮方法(tmax = 1)中,算法选择指定的决胜模型Mt的摘要。

对话式处理

生成遵循与集中式方法相同的方法,产生摘要集S = S1,…,Sk。与单轮方法的一个关键区别在于条件重生成机制:当第一轮未达成共识时,后续轮次使用包含先前评估生成的摘要的新提示。

第一轮评估与单轮方法相同,但在未达成共识时会进入带有新生成提示的额外轮次。在单轮情况下,未达成共识会立即触发决胜模型机制。相比之下,对话式方法会使用更新的提示启动新的生成-评估轮次。这个过程持续进行,直到出现多数共识或达到tmax轮。在tmax轮后仍未达成共识时,算法默认使用决胜机制。

实验设置

实验使用ArXiv和GovReport数据集评估摘要方法。使用ROUGE-1、ROUGE-L、BLEU-1和BLEU-4指标评估LLM生成摘要的质量。为了与多LLM方法进行比较,采用GPT-3.5、GPT-4o、GPT-4o mini和LLaMA3-8B作为基准。所有模型使用4K字符的块大小,最终摘要表示为生成摘要的连接。

评估结果

分散式和集中式多LLM方法的结果。

多LLM方法不同评估和决胜模型的结果。

  • 多LLM框架显著优于单一LLM基准,在某些情况下性能提升高达3倍
  • 集中式多LLM方法平均提升得分73%,而分散式方法平均提升70%
  • 仅使用两个LLM和单轮生成评估就能获得显著的性能提升,表明该方法具有成本效益
  • 该框架在不同的中央模型(评估器)和决胜模型中表现稳定
  • 超过两个LLM和额外的生成评估轮次并未带来进一步改进

实现代码

 fromlangchain_ollamaimportChatOllama  gemma2=ChatOllama(model="gemma2:9b", temperature=0)  llama3=ChatOllama(model="llama3:8b", temperature=0)  llama3_1=ChatOllama(model="llama3.1:8b", temperature=0)prompt_initial_summary="""  Provide a concise summary of the text in around 160 words.   Output the summary text only and nothing else.  

提示词

 prompt_initial_summary = """Provide a concise summary of the text in around 160 words. Output the summary text only and nothing else.

{text}

""".strip()prompt_subsequent_summary = """
Given the original text below, along with the summaries of that text by 3 LLMs,
please generate a better summary of the original text in about 160 words.
ORIGINAL:

{text}

Summary by agent_1:

{summary_1}

Summary by agent_2:

{summary_2}

Summary by agent_3:

{summary_3}

""".strip()prompt_decentralised_evaluation = """
Given the original text below, along with the summaries of that text by 3 agents,
please evaluate the summaries and output the name of the agent that has the best summary. 
Output the exact name only and nothing else.
ORIGINAL:

{text}

Summary by agent_1:

{summary_1}

Summary by agent_2:

{summary_2}

Summary by agent_3:

{summary_3}

""".strip()prompt_centralised_evaluation = """
Given the initial text below, along with the summaries of that text by 3 LLMs,
please evaluate the generated summaries and output the name of the LLM has the best summary. 
On a separate line indicate a confidence level between 0 and 10.ORIGINAL:

{text}

Summary by agent_1:

{summary_1}

Summary by agent_2:

{summary_2}

Summary by agent_3:

{summary_3}


Remember, on a separate line indicate a confidence level between 0 and 10.
""".strip()prompt_concate = """
Provide a concise summary of the text in around 160 words. 
Output the summary text only and nothing else.

{summaries}

""".strip()

汇总

 class SingleTurnCentralised():  def __init__(self, models):  self.models = models  def generate(self, text):  summaries = []  for model in self.models:  summaries.append(model.invoke([{"role": "user", "content": prompt_initial_summary.format(text=text)}]).content)  return summaries  def evaluate(self, text, summaries):  response = gemma2.invoke([  {"role": "user", "content": prompt_centralised_evaluation.format(text=text, summary_1=summaries[0], summary_2=summaries[1], summary_3=summaries[2])}  ]).content  winner, *_, confidence = response.split()  return winner, confidence  def __call__(self, chunks):  summarised_chunks = []  for chunk in chunks:  summaries = self.generate(chunk)  winner, confidence = self.evaluate(chunk, summaries)  summarised_chunks.append(summaries[int(winner[-1]) -1])  final_summary = gemma2.invoke([{"role": "user", "content": prompt_concate.format(summaries="\n".join(summarised_chunks))}]).content  return final_summary  single_turn_centralised = SingleTurnCentralised([gemma2, llama3, llama3_1])  final_summary = single_turn_centralised(chunks)

论文地址

Multi-LLM Text Summarization

https://avoid.overfit.cn/post/ba136ba242694d68bce4c5499c85c647

作者: Ritvik Rastogi


http://www.ppmy.cn/news/1567866.html

相关文章

C语言初阶力扣刷题——349. 两个数组的交集【难度:简单】

1. 题目描述 力扣在线OJ题目 给定两个数组,编写一个函数来计算它们的交集。 示例: 输入:nums1 [1,2,2,1], nums2 [2,2] 输出:[2] 输入:nums1 [4,9,5], nums2 [9,4,9,8,4] 输出:[9,4] 2. 思路 直接暴力…

1.2.神经网络基础

目录 1.2.神经网络基础 1.2.1.Logistic回归 1.2.2 梯度下降算法 1.2.3 导数 1.2.4 向量化编程 1.2.5 正向传播与反向传播 1.2.6.练习 1.2.神经网络基础 1.2.1.Logistic回归 1.2.1.1.Logistic回归 逻辑回归是一个主要用于二分分类类的算法。那么逻辑回归是给定一个x ,…

kotlin 简介

Kotlin 是一种现代化、跨平台的编程语言,由 JetBrains 开发,并于 2011 年首次发布。它可以用于多种开发场景,包括 Android 应用开发、后端服务开发、Web 开发,以及跨平台应用开发。 以下是对 Kotlin 的核心介绍: Kotl…

代码随想录算法训练营第三十八天-动态规划-完全背包-279.完全平方数

把目标值当作背包容量,每个平方数当作物品,题目变更为装满指定容量的背包,最小用几个物品会不会出现拼凑不出来的情况?不会,因为有数字1,对任意正整数百分百能拼凑出来因此此题目与上一道题就变得一模一样了…

Typesrcipt泛型约束详细解读

代码示例: // 如果我们直接对一个泛型参数取 length 属性, 会报错, 因为这个泛型根本就不知道它有这个属性 (() > {// 定义一个接口,用来约束将来的某个类型中必须要有length这个属性interface ILength{// 接口中有一个属性lengthlength:number}function getLen…

Java 大视界 -- Java 大数据在自动驾驶中的数据处理与决策支持(68)

💖亲爱的朋友们,热烈欢迎来到 青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也…

Redis内部数据结构--跳表详解

跳表 1. 什么是跳表--skiplist2. skiplist的效率如何保证3. 跳表的实现4. 跳表与平衡搜索树和哈希表的对比 1. 什么是跳表–skiplist skiplist本质上也是一种查找结构,用于解决算法中的查找问题,跟平衡搜索树和哈希表的价值是一样的,可以作为…

FPGA在空间领域应用的权衡之道

新官上任,干货较多。 去年10月30日,紫光国微在投资者关系活动中表示,对FPGA产品的国产化率以及未来价格压力趋势的答复是,除了个别品类外,FPGA领域已基本完成国产化替代。 价格竞争激烈,现有存量市场需求不足,导致产品价格成为重要竞争手段等。 价格是市场新进入者的…