梯度下降法 (Gradient Descent) 算法详解及案例分析
1. 引言
梯度下降法 (Gradient Descent, GD) 是机器学习和深度学习中最为基础和常用的优化算法之一。它通过迭代更新模型参数,沿着目标函数的负梯度方向逐步逼近最优解。梯度下降法广泛应用于线性回归、逻辑回归、神经网络等模型的训练中。
本文将详细介绍梯度下降法的原理,并通过三个具体案例展示其在实际问题中的应用。每个案例将提供完整的 Python 实现代码、流程图以及优化曲线。
2. 梯度下降法 (Gradient Descent) 算法原理
2.1 基本概念
梯度下降法的核心思想是通过计算目标函数的梯度(即一阶导数),沿着梯度的反方向更新参数,从而逐步减小目标函数的值。
2.2 算法步骤
- 初始化:随机初始化模型参数 θ