机器学习2 (笔记)(朴素贝叶斯,集成学习,KNN和matlab运用)

news/2025/1/24 12:33:03/

朴素贝叶斯模型

贝叶斯定理:

常见类型

算法流程

优缺点

集成学习算法

基本原理

常见方法

 KNN(聚类模型)

算法性质:

核心原理:

算法流程

优缺点

matlab中的运用


朴素贝叶斯模型

朴素贝叶斯模型是基于贝叶斯定理与特征条件独立假设的分类方法,在众多领域有广泛应用。

贝叶斯定理

贝叶斯定理解决的核心问题是,当出现新的信息或证据时,如何修正对某个事件发生概率的原有认知。它提供了一种基于先验知识和新证据来更新概率的方法,体现了概率推理的动态过程。

特征条件独立假设:假设给定类别下各个特征之间相互独立。

常见类型

高斯朴素贝叶斯:适用于特征变量为连续型数据,且这些数据服从高斯分布(正态分布)的情况。例如,在根据身高、体重等连续特征判断人的性别时,可假设这些特征在男性和女性群体中分别服从不同参数的高斯分布。

多项式朴素贝叶斯:常用于文本分类等场景,特征变量通常是离散的计数数据。比如在判断一篇文档是否属于某一主题时,以单词在文档中出现的次数作为特征,这些特征符合多项式分布。

伯努利朴素贝叶斯:适用于特征为二值变量的情况,即特征只有两种取值,如真 / 假、是 / 否等。例如在判断邮件是否为垃圾邮件时,可将邮件中某特定关键词的出现(是 / 否)作为二值特征。

算法流程

数据准备:收集数据并进行预处理,包括数据清洗、特征提取等。例如在文本分类中,需要对文本进行分词、去除停用词等操作。

计算先验概率:统计每个类别在训练数据集中出现的频率P(C),作为先验概率。比如在垃圾邮件分类中,统计垃圾邮件和正常邮件在训练集中所占的比例。

计算似然概率:根据特征条件独立假设,计算每个特征在不同类别下的条件概率

。例如在判断一封邮件是否为垃圾邮件时,计算某个关键词在垃圾邮件和正常邮件中出现的概率。

预测:对于新的样本,根据贝叶斯定理计算每个类别下的后验概率

,选择后验概率最大的类别作为预测结果。

,由于

对所有类别相同,所以只需比较分子部分。

优缺点

优点

算法简单高效:基于简单的概率计算,训练和预测速度快,对大规模数据集有较好的适应性。

所需数据量少:在数据较少的情况下仍能表现出较好的性能,且对数据的缺失值不太敏感。

可解释性强:通过计算概率来进行分类决策,结果相对容易理解,可解释每个类别预测的依据。

缺点

特征独立性假设强:实际应用中,特征之间往往存在一定相关性,这可能导致模型性能下降。例如在文本中,某些词汇可能存在语义关联,并不完全独立。

对输入数据的表达形式敏感:不同的特征表示方式可能会对模型效果产生较大影响,如文本分类中不同的分词方法。

集成学习算法

一种机器学习范式,它通过组合多个基学习器(Base Learner)来创建一个更强大、更稳健的模型,以提高模型的泛化能力和预测性能。以下从其原理、常见方法、应用场景、优缺点展开介绍:

基本原理

集成学习的核心思想基于 “三个臭皮匠,赛过诸葛亮” 的理念。不同的基学习器可能在处理数据的不同方面或特征上具有优势,通过将它们结合起来,可以互相补充,减少单一模型的偏差和方差,从而提升整体性能。例如,在预测房价的任务中,一个基学习器可能擅长捕捉房屋面积与价格的关系,另一个可能对房屋所在区域的影响把握更准,集成学习能综合二者优势,做出更准确的预测。

常见方法

Bagging(自举汇聚法)

原理:从原始训练数据集中有放回地随机采样,生成多个与原始数据集大小相同的子数据集,每个子数据集用于训练一个基学习器。由于采样的随机性,不同基学习器基于不同的数据子集进行训练,从而引入了多样性。例如,对于一个包含 1000 个样本的原始数据集,每次有放回地抽取 1000 个样本组成子数据集,多次抽取得到多个不同的子数据集。

代表算法:随机森林(Random Forest)是基于 Bagging 的典型算法,它以决策树为基学习器。在构建每棵决策树时,不仅对样本进行有放回采样,还在节点分裂时随机选择特征子集,进一步增加了决策树之间的差异。最终通过投票(分类任务)或平均(回归任务)的方式综合各决策树的结果。

Boosting(提升法)

原理:基学习器按顺序依次训练,每个新的基学习器会重点关注前一个基学习器预测错误的样本,通过不断调整样本权重,使得后续学习器能够更聚焦于难以分类或预测的样本。例如,在初始阶段,所有样本权重相同,当第一个基学习器训练完成后,将预测错误的样本权重增大,这样下一个基学习器在训练时就会更关注这些样本。

代表算法:Adaboost(自适应提升算法)是最早的 Boosting 算法之一,它通过迭代训练多个弱分类器,并为每个弱分类器赋予不同的权重,最终将这些弱分类器线性组合成一个强分类器。另一个重要的算法是梯度提升树(Gradient Boosting Tree,GBT),它以决策树为基学习器,通过不断拟合残差(即真实值与当前模型预测值的差值)来提升模型性能。

 KNN(聚类模型)

算法性质:

K - Means 属于无监督学习算法,旨在将数据集中的样本划分为 K 个不同的簇,使同一簇内样本相似度高,不同簇间样本相似度低。

核心原理:

随机选择 K 个点作为初始聚类中心,然后将每个样本分配到与其距离最近的聚类中心所在的簇。分配完成后,重新计算每个簇的中心(通常是簇内所有样本的均值)。不断重复样本分配和中心更新步骤,直到聚类中心不再变化或达到预设的迭代次数,此时认为聚类收敛。

算法流程

初始化:随机选择 K 个样本点作为初始聚类中心。

分配样本:计算每个样本到 K 个聚类中心的距离,将样本分配到距离最近的聚类中心所在的簇。

更新聚类中心:计算每个簇内样本的均值,以此更新聚类中心位置。

判断收敛:检查聚类中心是否变化,若变化则返回步骤 2 继续迭代;若不变或达到最大迭代次数,则结束算法。

优缺点

优点:原理简单,计算效率高,能快速处理大规模数据集;对处理数值型数据效果较好。

缺点:需事先指定聚类数 K,K 值选择往往依赖经验且可能影响结果;对初始聚类中心敏感,不同初始值可能导致不同聚类结果;对非凸形状的数据分布或存在噪声的数据聚类效果不佳。

matlab中的运用

1,导入数据*注意这里的变量名训练的和预测的名字要一致

2,matlab工具箱->分类学习器(或者classificationLearner)

(如果是回归学习器,就是reegressionLearner)

3,导入数据

有如下的训练方法

4,并行训练即可

5,导出模型就可以进行预测了

6,预测

第五步也可以采用导出代码来预测

在模型导出的时候选择

然后注释函数行,然后赋值trainingData就可以了

trainingData=x            %%%%%%%x为对应的数据

inputTable = trainingData;

predictorNames = {'VarName1', 'VarName2', 'VarName3', 'VarName4'};

predictors = inputTable(:, predictorNames);

response = inputTable.VarName5;

isCategoricalPredictor = [false, false, false, false];

classNames = categorical({'变色鸢尾'; '山鸢尾'; '维吉尼亚鸢尾'});

% 训练分类器

% 以下代码指定所有分类器选项并训练分类器。

template = templateLinear(...

'Learner', 'Logistic', ...

'Lambda', 'auto', ...

'BetaTolerance', 0.0001);

classificationLinear = fitcecoc(...

predictors, ...

response, ...

'Learners', template, ...

'ClassNames', classNames);

% 使用预测函数创建结果结构体

predictorExtractionFcn = @(t) t(:, predictorNames);

classificationLinearPredictFcn = @(x) predict(classificationLinear, x);

trainedClassifier.predictFcn = @(x) classificationLinearPredictFcn(predictorExtractionFcn(x));

% 向结果结构体中添加字段

trainedClassifier.RequiredVariables = {'VarName1', 'VarName2', 'VarName3', 'VarName4'};

trainedClassifier.ClassificationLinear = classificationLinear;

trainedClassifier.About = '此结构体是从分类学习器 R2023a 导出的训练模型。';

trainedClassifier.HowToPredict = sprintf('要对新表 T 进行预测,请使用: \n [yfit,scores] = c.predictFcn(T) \n将 ''c'' 替换为作为此结构体的变量的名称,例如 ''trainedModel''。\n \n表 T 必须包含由以下内容返回的变量: \n c.RequiredVariables \n变量格式(例如矩阵/向量、数据类型)必须与原始训练数据匹配。\n忽略其他变量。\n \n有关详细信息,请参阅 <a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), ''appclassification_exportmodeltoworkspace'')">How to predict using an exported model</a>。');

% 提取预测变量和响应

% 以下代码将数据处理为合适的形状以训练模型。

%

inputTable = trainingData;

predictorNames = {'VarName1', 'VarName2', 'VarName3', 'VarName4'};

predictors = inputTable(:, predictorNames);

response = inputTable.VarName5;

isCategoricalPredictor = [false, false, false, false];

classNames = categorical({'变色鸢尾'; '山鸢尾'; '维吉尼亚鸢尾'});

% 执行交叉验证

KFolds = 5;

cvp = cvpartition(response, 'KFold', KFolds);

% 将预测初始化为适当的大小

validationPredictions = response;

numObservations = size(predictors, 1);

numClasses = 3;

validationScores = NaN(numObservations, numClasses);

for fold = 1:KFolds

trainingPredictors = predictors(cvp.training(fold), :);

trainingResponse = response(cvp.training(fold), :);

foldIsCategoricalPredictor = isCategoricalPredictor;

% 训练分类器

% 以下代码指定所有分类器选项并训练分类器。

template = templateLinear(...

'Learner', 'Logistic', ...

'Lambda', 'auto', ...

'BetaTolerance', 0.0001);

classificationLinear = fitcecoc(...

trainingPredictors, ...

trainingResponse, ...

'Learners', template, ...

'ClassNames', classNames);

% 使用预测函数创建结果结构体

classificationLinearPredictFcn = @(x) predict(classificationLinear, x);

validationPredictFcn = @(x) classificationLinearPredictFcn(x);

% 向结果结构体中添加字段

% 计算验证预测

validationPredictors = predictors(cvp.test(fold), :);

[foldPredictions, foldScores] = validationPredictFcn(validationPredictors);

% 按原始顺序存储预测

validationPredictions(cvp.test(fold), :) = foldPredictions;

validationScores(cvp.test(fold), :) = foldScores;

end

% 计算验证准确度

correctPredictions = (validationPredictions == response);

isMissing = ismissing(response);

correctPredictions = correctPredictions(~isMissing);

validationAccuracy = sum(correctPredictions)/length(correctPredictions);

决策树的可视化:

figure(1)

view ( trainingModel.ClassificationTree,’Mode’,’graph’)


http://www.ppmy.cn/news/1565784.html

相关文章

鸿蒙系统的多端部署

鸿蒙操作系统&#xff08;HarmonyOS&#xff09;是由华为技术有限公司开发的面向未来的分布式操作系统&#xff0c;旨在为用户提供跨设备无缝协同体验。鸿蒙系统不仅支持多种终端设备&#xff0c;如手机、平板、智能穿戴、智能家居等&#xff0c;还提供了统一的操作系统和多端部…

OpenCV:高通滤波之索贝尔、沙尔和拉普拉斯

目录 简述 什么是高通滤波&#xff1f; 高通滤波的概念 应用场景 索贝尔算子 算子公式 实现代码 特点 沙尔算子 算子公式 实现代码 特点 拉普拉斯算子 算子公式 实现代码 特点 高通滤波器的对比与应用场景 相关阅读 OpenCV&#xff1a;图像滤波、卷积与卷积核…

65,【5】buuctf web [SUCTF 2019]Upload Labs 2

进入靶场 1,源代码 点击题目时有个就有个admin.php <?php // 引入配置文件 include config.php;class Ad{public $cmd;public $clazz;public $func1;public $func2;public $func3;public $instance;public $arg1;public $arg2;public $arg3;// 构造函数&#xff0c;用于初…

React 路由导航与传参详解

随着单页面应用&#xff08;SPA&#xff09;已经成为主流。React 作为最流行的前端框架之一&#xff0c;提供了强大的路由管理工具 react-router-dom&#xff0c;帮助开发者轻松实现页面导航和传参。本文将详细介绍如何使用 react-router-dom 构建路由导航、传参以及嵌套路由的…

软件测试—— 接口测试(HTTP和HTTPS)

软件测试—— 接口测试&#xff08;HTTP和HTTPS&#xff09; HTTP请求方法GET特点使用场景URL结构URL组成部分URL编码总结 POST特点使用场景请求结构示例 请求标头和响应标头请求标头&#xff08;Request Headers&#xff09;示例请求标头 响应标头&#xff08;Response Header…

在Android中通过JNI实现Java与C++的交互:Hello World示例

java与C的交互 作者&#xff1a;我的青春不太冷引言 &#x1f31f;准备工作 &#x1f6e0;️环境要求 实战演示 &#x1f4bb;1️⃣ 创建支持C的Android项目2️⃣ C代码编写 代码解析 &#x1f4da;实用技巧 &#x1f4a1;下一步学习 &#x1f4c8; 作者&#xff1a;我的青春不…

解锁跨平台通信:Netty、Redis、MQ和WebSocket的奇妙融合

目录 一、业务场景分析合 &#xff08;一&#xff09;实时聊天系统 &#xff08;二&#xff09;数据推送服务 &#xff08;三&#xff09;分布式系统间通信 二、实现方案与代码实例 &#xff08;一&#xff09;环境搭建 &#xff08;二&#xff09;Netty 与 WebSocket 集…

【玩转全栈】----Django基本配置和介绍

目录 Django基本介绍&#xff1a; Django基本配置&#xff1a; 安装Django 创建项目 创建app 注册app Django配置路由URL Django创建视图 启动项目 Django基本介绍&#xff1a; Django是一个开源的、基于Python的高级Web框架&#xff0c;旨在以快速、简洁的方式构建高质量的Web…