python学opencv|读取图像(四十一 )使用cv2.add()函数实现各个像素点BGR叠加

news/2025/1/22 20:17:56/

【1】引言

前序已经学习了直接在画布上使用掩模,会获得彩色图像的多种叠加效果,相关文章链接为:

pythonopencv|读取图像(四十)掩模:三通道图像的局部覆盖-CSDN博客

这时候如果更进一步,直接用两张图片互相叠加,是否会有新的图像出现?这就是本次文章想讨论的内容。

在更早的时候,我们已经掌握了对灰度图像的掩模操作:

pythonopencv|读取图像(九)用numpy创建黑白相间灰度图_numpy生成全黑图片-CSDN博客

因此,这种图片叠加的操作,应该可以同时作用于灰度图像和彩色图像。

探索图像的叠加效果,需要使用的函数是cv2.add()。

【2】官网教程

点击下述链接,可以直达cv2.add()函数官网说明:

OpenCV: Operations on arrays

官网页面关于cv2.add()函数的说明为:

图1

具体的各个参数的意义为:

void cv::add     (     InputArray     src1,   #输入图像1
        InputArray     src2,                         #输入图像2
        OutputArray     dst,                        #输出图像2
        InputArray     mask = noArray(),    #掩模
        int     dtype = -1 )                           #输出图像的深度,为默认值,暂无需关注

【3】代码测试

【3.1】灰度图像

首先是引入cv2等模块和原始图像:

python">import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块# 读取图片-直接转化灰度图
src = cv.imread('srcf.png',0) #读取图像
dst=src#输出图像

然后进行图形叠加操作:

python">#图像叠加
dst1=dst+dst #图像使用“+”叠加
dst2=cv.add(dst,dst) #图像使用“cv.add()函数”叠加

然后在屏幕上展示图像:

python">#在屏幕展示效果
cv.imshow('srcdst', dst)  # 在屏幕展示效果
cv.imshow('srcdst1', dst1)  # 在屏幕展示效果
cv.imshow('srcdst2', dst1)  # 在屏幕展示效果

为探寻实际的叠加效果,读取了特定像素点的BGR值:

python">#显示BGR值
print("dst像素数为[258,258]位置处的BGR=", dst[258, 258])  # 获取像素数为[100,100]位置处的BGR
print("dst1像素数为[258,258]位置处的BGR=", dst1[258,258])  # 获取像素数为[100,100]位置处的BGR
print("dst2像素数为[258,258]位置处的BGR=", dst2[258,258])  # 获取像素数为[100,100]位置处的BGR
print("dst像素数为[100,100]位置处的BGR=", dst[100, 100])  # 获取像素数为[100,100]位置处的BGR
print("dst1像素数为[100,100]位置处的BGR=", dst1[100,100])  # 获取像素数为[100,100]位置处的BGR
print("dst2像素数为[100,100]位置处的BGR=", dst2[100,100])  # 获取像素数为[100,100]位置处的BGR

之后保存相关图像:

python">#保存图像
cv.imwrite('srcf-dst.png', dst)  # 保存图像
cv.imwrite('srcf-dst1.png', dst1)  # 保存图像
cv.imwrite('srcf-dst2.png', dst2)  # 保存图像cv.waitKey()  # 图像不会自动关闭
cv.destroyAllWindows()  # 释放所有窗口

本文使用的原始图像为:

图2 原始图像

叠加后的图像效果为:

图3 图像使用“+”叠加-灰度图像

图4 图像使用“cv.add()函数”叠加-灰度图像

由图3和图4对比可见:图4相对来说更亮。

这时候,再看特定点的BGR值:

图5 特定像素点BGR值-灰度图像

在像素点[258,258]获得的原始图像dst对应的BGR=71,dst1和dst2在该点对应的BGR=142=2*71,可以明显看到使用“+”叠加和“cv.add()函数”叠加的效果在本质上都是对该像素点的BGR值进行叠加。

在像素点[100,100]获得的原始图像dst对应的BGR=156,dst1在该点对应的BGR=56,dst2在该点对应的BGR=255。实际上,使用“+”叠加和“cv.add()函数”叠加的效果在本质上都是对该像素点的BGR值进行叠加,但对于使用“+”叠加,像素点BGR值超过255后会重新计数,57=156*2-255,但由于像素点是从0开始计算,所以第57个数对应的BGR值为56;使用和“cv.add()函数”叠加,像素点BGR值超过255后会直接截断为255。

【3.2】彩色图像

之后进行彩色图像的零值和反零值处理,这只需要改一行代码,将src = cv.imread('srcun.png',0)改为:

src = cv.imread('srcun.png') #读取图像

直接输出完整代码:

python">import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块# 读取图片-直接转化灰度图
src = cv.imread('srcf.png') #读取图像
dst=src#输出图像#图像叠加
dst1=dst+dst #图像使用“+”叠加
dst2=cv.add(dst,dst) #图像使用“cv.add()函数”叠加#在屏幕展示效果
cv.imshow('srcdst', dst)  # 在屏幕展示效果
cv.imshow('srcdst1', dst1)  # 在屏幕展示效果
cv.imshow('srcdst2', dst2)  # 在屏幕展示效果#显示BGR值
print("dst像素数为[258,258]位置处的BGR=", dst[258, 258])  # 获取像素数为[100,100]位置处的BGR
print("dst1像素数为[258,258]位置处的BGR=", dst1[258,258])  # 获取像素数为[100,100]位置处的BGR
print("dst2像素数为[258,258]位置处的BGR=", dst2[258,258])  # 获取像素数为[100,100]位置处的BGR
print("dst像素数为[100,100]位置处的BGR=", dst[100, 100])  # 获取像素数为[100,100]位置处的BGR
print("dst1像素数为[100,100]位置处的BGR=", dst1[100,100])  # 获取像素数为[100,100]位置处的BGR
print("dst2像素数为[100,100]位置处的BGR=", dst2[100,100])  # 获取像素数为[100,100]位置处的BGR#保存图像
cv.imwrite('srcf-c-dst.png', dst)  # 保存图像
cv.imwrite('srcf-c-dst1.png', dst1)  # 保存图像
cv.imwrite('srcf-c-dst2.png', dst2)  # 保存图像cv.waitKey()  # 图像不会自动关闭
cv.destroyAllWindows()  # 释放所有窗口

代码运行后获得的图像效果为:

图6 图像使用“+”叠加-灰度图像

图7 图像使用“cv.add()函数”叠加-彩色图像

此时的特定像素点BGR值为:

图8 特定像素点BGR值-彩色图像

对像素点[258,258]和像素点[100,100]获得的原始图像dst对应的BGR和叠加后的图像dst1、dst2在该点对应的BGR分析可知:使用“+”叠加和“cv.add()函数”叠加的效果在本质上都是对该像素点的BGR值进行叠加,但对于使用“+”叠加,像素点BGR值超过255后会重新计数;使用和“cv.add()函数”叠加,像素点BGR值超过255后会直接截断为255。

图9 对比效果

【4】细节说明

如果相互叠加的两个图像原本对应的BGR值分别为BGR1和BGR2,使用“+”叠加时,重新计数的BGR=BGR1+BGR2-255-1。

【5】总结

掌握了python+opencv实现各个像素点BGR叠加的技巧。


http://www.ppmy.cn/news/1565299.html

相关文章

YOLOv9改进,YOLOv9检测头融合DiverseBranchBlock(多样分支块),适合目标检测、分割任务

摘要 一种卷积神经网络(ConvNet)的通用构建模块,以在不增加推理时间成本的情况下提高性能。该模块被命名为多样分支块(Diverse Branch Block,DBB),通过结合不同尺度和复杂度的多样分支来丰富特征空间,包括卷积序列、多尺度卷积和平均池化,从而增强单个卷积的表示能力…

人形机器人将制造iPhone!

前言 优必选机器人和富士康通过一项突破性的合作伙伴关系,正在将先进的人形机器人(如Walker S1及其升级版Walker S2)整合到制造流程中,以改变iPhone的生产方式。这一合作旨在通过提升机器人能力、优化工作流程以及实现更智能的自动…

VR vs AR:哪种技术更有潜力改变未来?

AR与VR的未来之争 在我们的日常生活中,技术的更新换代仿佛只需一瞬间。而在众多技术中,虚拟现实(VR)和增强现实(AR)如同璀璨的明星,吸引着无数眼球。你是否曾因选择哪种技术更具潜力而感到困惑…

C++入门 详细版

欢迎来到干货小仓库!! 一分耕耘一分收获,离自己的目标越来越近。 passion!passion!!passion!!! 1.命名空间 由于C语言无法避免名字或者函数重复等问题,当有多…

UDP協議與代理IP介紹

UDP,全稱是用戶數據報協議(User Datagram Protocol),是Internet協議套組的一部分,與TCP協議一道工作。與TCP相比,UDP可以理解為一個更“羽量級”的協議。它不需要像TCP那樣在數據傳輸開始之前建立連接&…

Debian 上安装PHP

1、安装软件源拓展工具 apt -y install software-properties-common apt-transport-https lsb-release ca-certificates 2、添加 Ondřej Sur 的 PHP PPA 源,需要按一次回车: add-apt-repository ppa:ondrej/php 3、更新软件源缓存: apt-g…

Java爬虫调用API时的异常处理策略

在使用Java爬虫调用API时,异常处理是确保程序稳定运行的关键环节。网络请求可能会遇到各种问题,如网络超时、服务器错误、数据格式错误等。合理地处理这些异常可以提高爬虫的健壮性和可靠性。以下是一些常见的异常处理策略和代码示例。 一、常见的异常类…

服务器硬盘RAID速度分析

​ 在现代数据中心和企业环境中,服务器的存储性能至关重要,RAID(独立磁盘冗余阵列)技术通过将多块硬盘组合成一个逻辑单元,提供了数据冗余和性能优化,本文将详细探讨不同RAID级别对服务器硬盘速度的影响&am…