使用tritonserver完成clip-vit-large-patch14图像特征提取模型的工程化。

news/2025/1/22 15:09:45/

1、关于clip-vit-large-patch14模型

关于openapi开源的clip-vit-large-patch14模型的特征提取,可以参考之前的文章:Elasticsearch向量检索需要的数据集以及768维向量生成这篇文章详细介绍了模型的下载地址、使用方式、测试脚本,可以让你一步实现图片特征的提取,如果你想搭建一个图片搜搜索服务,也可以参考这篇文章:Golang+Elasticsearch轻松搭建AI时代的图片搜索服务今天要讨论的不同于以往,我们要实现的是,通过nvidia的开源框架tritonserver完成openai这个模型的工程化,对外可以通过http、grpc轻松获取任一图片的特征。这篇文章也是之前承诺的,说到做到。

2、triton自定义backend的实现

首先还是简单回顾一下triton自定义banckend的实现,openai开源的这个模型,无法直接使用triton进行工程化,所以我们需要编写一个自定义的python backend,关于triton backend的实现,可以参考如下文章:tritonserver学习之五:backend实现机制、tritonserver学习之六:自定义c++、python custom backend实践,triton自定义python banckend的实现还是比较低成本的,只要实现三个api即可。

def initialize(self, args)
def execute(self, requests)
def finalize(self)

看函数的名字,大家应该都能理解,三个函数分别为:初始化、执行推理、退出,finalize称为析构我觉着更贴切,就是释放掉整个推理过程中所申请的临时资源。

实现代码我会放到github上(https://github.com/liupengh3c/career),由于篇幅关系,就不贴在这里了。

接下来,设计该backend的输入以及输出,输入就是一张图片,格式为:不限制宽高、图片为3通道,输出就是一个768维的特征向量,那么对于triton架构中模型的配置编写如下:

name:"clip-vit-large-patch14"
backend:"python"
input [{name:"INPUT0"data_type: TYPE_FP32dims: [3,-1,-1]}
]output[{name:"OUTPUT0"data_type: TYPE_FP32dims: [ 768 ]}
]
instance_group[{ kind: KIND_CPU }]

因为没有gpu卡,所以【instance_group】这个字段就设置将服务运行在cpu上。

接下来需要按照triton的要求,对backend的目录重新组织一下,首先设定自定义backend的名称为:clip-vit-large-patch14,目录格式如下:

其中:

  • 【1】代表版本号。

  • 【clip-vit-large-patch14】文件夹为openai的原始模型。

  • 【config.pbtxt】为模型配置文件。

  • 【model.py】为python backend的实现。

到这里,自定义backend、配置文件、模型目录都已设置完毕,接下来serve该模型。

3、拉取tritonserver最新docker镜像

docker pull nvcr.io/nvidia/tritonserver:24.12-py3

启动镜像,并将backend路径映射到容器内:

docker run --rm -p8000:8000 -p8001:8001 -p8002:8002 -it -v /Users/liupeng/Documents/career/career/triton_backend:/models nvcr.io/nvidia/tritonserver:24.12-py3

在容器中安装backend依赖:

pip3 install transformers
pip3 install torch
pip3 install pillow

 启动tritonserver:

tritonserver --model-repository=/models

对于triton的使用,我们可以参考这篇文章:tritonserver学习之一:triton使用流程,启动后打印如下:

可以看到,我们的新模型成功启动啦~~~~~~~~~~~。

模型已成功serve,但是模型是否能够正常抽取图片特征,则需要去实现tritonserver client端请求该服务来做验证,待我开发、验证完成后,再发文章分享给各位小伙伴,本周之内必定会完成,大家稍等几天。

 


http://www.ppmy.cn/news/1565240.html

相关文章

小白爬虫——selenium入门超详细教程

目录 一、selenium简介 二、环境安装 2.1、安装Selenium 2.2、浏览器驱动安装 三、基本操作 3.1、对页面进行操作 3.1.1、初始化webdriver 3.1.2、打开网页 3.1.3、页面操作 3.1.4、页面数据提取 3.1.5、关闭页面 ?3.1.6、综合小案例 3.2、对页面元素进行操作 3…

【深度学习】Huber Loss详解

文章目录 1. Huber Loss 原理详解2. Pytorch 代码详解3.与 MSELoss、MAELoss 区别及各自优缺点3.1 MSELoss 均方误差损失3.2 MAELoss 平均绝对误差损失3.3 Huber Loss 4. 总结4.1 优化平滑4.2 梯度较好4.3 为什么说 MSE 是平滑的 1. Huber Loss 原理详解 Huber Loss 是一种结合…

开源模型应用落地-FastAPI-助力模型交互-进阶篇-中间件(四)

一、前言 FastAPI 的高级用法可以为开发人员带来许多好处。它能帮助实现更复杂的路由逻辑和参数处理,使应用程序能够处理各种不同的请求场景,提高应用程序的灵活性和可扩展性。 在数据验证和转换方面,高级用法提供了更精细和准确的控制&…

【PHP】部署和发布PHP网站到IIS服务器

欢迎来到《小5讲堂》 这是《PHP》系列文章,每篇文章将以博主理解的角度展开讲解。 温馨提示:博主能力有限,理解水平有限,若有不对之处望指正! 目录 前言安装PHP 稳定版本线程安全版解压使用 PHP配置 配置文件扩展文件…

傅里叶变换在语音识别中的关键作用

在语音识别中,傅里叶变换起着至关重要的作用,主要体现在以下几个方面: 一、时域到频域的转换 语音信号的特点 语音信号是一种时域信号,它随时间变化。例如,当我们说话时,声带的振动产生声波,这…

Selenium配合Cookies实现网页免登录

文章目录 前言1 方案一:使用Chrome用户数据目录2 方案二:手动获取并保存Cookies,后续使用保存的Cookies3 注意事项 前言 在进行使用Selenium进行爬虫、网页自动化操作时,登录往往是一个必须解决的问题,但是Selenium每次…

【25考研】考清华的软件工程专业的研究生需要准备什么?

清华软件复试竞争一样很激烈!建议同学认真复习! 关于项目的注意事项先来一些总结: 千万别照抄开源项目 开源项目是一个很好的参考,但直接搬过来就没啥意义啦。我们可以根据开源项目学习它的技术架构和关键点,然后结…

资料03:【TODOS案例】微信小程序开发bilibili

样式 抽象数据类型 页面数据绑定 事件传参