计算机组成原理(九):乘法器

news/2025/1/12 4:46:34/

乘法器原理

乘法器的工作原理可以用二进制乘法来说明。二进制乘法和十进制乘法类似,通过部分积的累加得到结果。

部分积的生成

在二进制乘法中,每一位的乘积是两个二进制数位的 与运算(0 × 0 = 0,1 × 0 = 0,0 × 1 = 0,1 × 1 = 1)。例如:

  A = 1101  (13 in decimal)
× B = 1011  (11 in decimal)
--------------1101   (部分积1,对应 B 的最低位)
+    0000    (部分积2,B 的次低位为 0)
+   1101     (部分积3,B 的次高位为 1)
+  1101      (部分积4,B 的最高位为 1)
--------------10011111   (143 in decimal)

累加器的使用

乘法器通过生成部分积,并使用一个累加器不断相加最终得到结果。

乘法器的分类

串行乘法器

  • 特点
    • 使用移位寄存器和一个累加器。
    • 部分积逐位生成并累加。
  • 优点
    • 硬件简单,占用资源少。
  • 缺点
    • 速度慢,每次操作需要多个时钟周期。
  • 算法
    • 从最低有效位到最高有效位逐位处理乘数。
    • 每处理一位,若该位为1,则累加乘数。
    • 移位操作用来对应权重增加。
+-----------------+
|  被乘数寄存器  | --> 左移
+-----------------+^|       +----------------++------>+ 累加器寄存器   |  (累加部分积)+------>+----------------+^|       +----------------++------>+ 乘数寄存器     | --> 右移+----------------+

并行乘法器

  • 特点
    • 同时生成所有部分积并进行累加。
  • 优点
    • 速度快,只需少量时钟周期。
  • 缺点
    • 硬件复杂,资源占用高。
  • 实现方式
    • 使用逻辑门实现。
    • 可使用加法器树(如Wallace树)优化部分积的累加过程,减少延迟。
乘数位  --> 部分积生成器 --> 加法器树 --> 最终结果
被乘数位

Booth 乘法器

  • 特点:
    • 针对有符号数优化,减少部分积的数量。
    • 通过对乘数进行编码(Booth 编码)减少操作次数。
  • 优点:
    • 适合处理有符号乘法。
    • 可以有效减少硬件复杂度。
  • 算法核心:
    • 检测乘数的相邻位变化,避免逐位处理部分积。

阵列乘法器

  • 特点:
    • 使用一个阵列结构,将乘法分解成多个加法和移位操作。
  • 优点:
    • 可并行计算,提高运算速度。
    • 适合在硬件中实现。
  • 缺点:
    • 硬件资源消耗较多。
被乘数× 乘数
--------------部分积阵列 --> 加法阵列 --> 最终结果

乘法器的实现步骤

部分积生成

  • 通过对每位乘数和乘数位的与运算生成部分积。

部分积对齐

  • 通过移位操作,使部分积对应权重正确对齐。

部分积累加

  • 串行乘法器使用一个累加器逐步累加部分积。
  • 并行乘法器使用多个加法器或加法器树快速完成部分积累加。

乘法器在硬件中的实现

逻辑门实现

  • 使用基本的逻辑门(如与门、或门、异或门)实现部分积的生成。
  • 加法器用于部分积的累加。

FPGA 或 ASIC 实现

  • 在 FPGA 中,可以通过硬件描述语言(如 Verilog 或 VHDL)实现乘法器
  • 硬件平台中,现代编译器通常会将乘法优化为内置乘法器单元。

浮点数乘法器

  • 对于浮点数,需要处理尾数的乘法、指数的加法,并对结果进行规格化。

示例(c++模拟乘法器

#include <iostream>int multiply(int multiplicand, int multiplier) {int result = 0;while (multiplier != 0) {if (multiplier & 1) { // 如果当前位为1result += multiplicand;}multiplicand <<= 1;   // 左移乘数multiplier >>= 1;    // 右移乘数}return result;
}int main() {int a = 13, b = 11;std::cout << "Result: " << multiply(a, b) << std::endl; // 输出 143return 0;
}

http://www.ppmy.cn/news/1562407.html

相关文章

【开源免费】基于SpringBoot+Vue.JS多维分类的知识管理系统(JAVA毕业设计)

本文项目编号 T 121 &#xff0c;文末自助获取源码 \color{red}{T121&#xff0c;文末自助获取源码} T121&#xff0c;文末自助获取源码 目录 一、系统介绍二、数据库设计三、配套教程3.1 启动教程3.2 讲解视频3.3 二次开发教程 四、功能截图五、文案资料5.1 选题背景5.2 国内…

工作生活的感悟

前言 这篇博客基本每年都更新&#xff0c;每年都有新的感悟&#xff0c;作为一个记录吧&#xff01;以后按照年来记录 2022年 不经意间&#xff0c;已在职场耕耘数载&#xff0c;特此记录以作回顾。 无用之用&#xff0c;方为大用&#xff1a; 年岁渐长&#xff0c;愈发体会…

matlab系列专栏-快捷键速查手册

目录 1在命令窗口(Command Window)中 2. 在编辑器(Editor)&#xff08;m文件&#xff09;中 1在命令窗口(Command Window)中 1)【↑、↓】——切换到之前、之后运行过的命令&#xff0c;可以重复按多次来达到想要的命令。 2)【Tab】——自动补全。在Command窗口&#xff0c…

一、智能体强化学习——强化学习基础

1.1 强化学习与深度学习的基本概念 1.1.1 强化学习的核心思想 什么是强化学习&#xff1f; 强化学习&#xff08;Reinforcement Learning, RL&#xff09;&#xff1a;指在与环境&#xff08;Environment&#xff09;的反复交互中&#xff0c;智能体&#xff08;Agent&#x…

LeetCode - #186 翻转字符串里的单词 II(会员题)

网罗开发 &#xff08;小红书、快手、视频号同名&#xff09; 大家好&#xff0c;我是 展菲&#xff0c;目前在上市企业从事人工智能项目研发管理工作&#xff0c;平时热衷于分享各种编程领域的软硬技能知识以及前沿技术&#xff0c;包括iOS、前端、Harmony OS、Java、Python等…

【MySQL】第五章 数据类型

系列文章目录 《【MySQL】第一章 MySQL 5.7的安装与卸载》 《【MySQL】第二章 初识数据库》 《【MySQL】第三章 库的操作》 《【MySQL】第四章 表的操作》 《【MySQL】第五章 数据类型》 文章目录 系列文章目录环境准备数据类型分类数值类型数值类型分类整数类型浮点数FLOATDE…

后端:Spring(IOC、AOP)

文章目录 1. Spring2. IOC 控制反转2-1. 通过配置文件定义Bean2-1-1. 通过set方法来注入Bean2-1-2. 通过构造方法来注入Bean2-1-3. 自动装配2-1-4. 集合注入2-1-5. 数据源对象管理(第三方Bean)2-1-6. 在xml配置文件中加载properties文件的数据(context命名空间)2-1-7. 加载容器…

LabVIEW轴承性能测试系统

本文介绍了基于LabVIEW的高效轴承性能测试系统的设计与开发。系统通过双端驱动技术实现高精度同步控制&#xff0c;针对轴承性能进行全面的测试与分析&#xff0c;以提高轴承的可靠性和寿命。 项目背景 随着工业自动化程度的提高&#xff0c;对轴承的性能要求越来越高。传统的…