【数据可视化-11】全国大学数据可视化分析

news/2025/1/8 9:16:43/

🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907

💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。④ 进群免费赠送写作秘籍一份,助你由写作小白晋升为创作大佬。⑤ 进群赠送CSDN评论防封脚本,送真活跃粉丝,助你提升文章热度。有兴趣的加文末联系方式,备注自己的CSDN昵称,拉你进群,互相学习共同进步。

在这里插入图片描述

【数据可视化-11】全国大学数据可视化分析

  • 一、引言
  • 二、导入分析库与数据清洗
  • 三、pyecharts可视化实践
    • 3.1 高校地理分布图
    • 3.2 全国不同类型大学数量情况
    • 3.3 高校类型与层次分析图
    • 3.4 全国不同大学隶属情况
    • 3.5 高校的坐标点位分析
  • 四、结论与展望

一、引言

  本文将带你一起探索一份全国高校数据集,通过pyecharts这一强大的Python可视化库,将抽象的数据转化为直观的图表,揭示高校分布、类型、层次以及各类标签(如985、211、双一流)之间的关联与差异。

二、导入分析库与数据清洗

  导入相应的分析库并进行数据加载。

import pandas as pd
from collections import Counter
###画图
from pyecharts import options as opts
from pyecharts.charts import Map
from pyecharts.globals import ThemeType
from pyecharts.charts import Bar, Pie, Timeline
from pyecharts.faker import Fakerdf = pd.read_csv("全国大学数据.csv",encoding='gbk')
df.head()

  数据具体的格式如下:

  对省份字段进行标准化处理:

province_mapping = {'北京':"北京市",'天津':"天津市",'河北':"河北省",'山西':"山西省",'内蒙古':"内蒙古自治区",'辽宁':"辽宁省"...
}df['省份'] = df['省份'].map(province_mapping)

三、pyecharts可视化实践

3.1 高校地理分布图

  使用pyecharts的Map组件,我们可以直观地展示全国高校的地理分布情况。通过颜色深浅或图标大小来反映各省份高校数量的多少,让读者一眼就能看出哪些地区是高等教育的重镇。同时,结合交互功能,读者可以点击地图上的省份,查看详细的高校列表。

from pyecharts.charts import Map
from pyecharts import options as opts
import pandas as pd# 假设df为预处理后的DataFrame
province_counts = df['省份'].value_counts().reset_index()
province_counts.columns = ['省份', '高校数量']map_chart = (Map().add("高校数量", [list(z) for z in zip(province_counts['省份'], province_counts['高校数量'])], "china").set_global_opts(title_opts=opts.TitleOpts(title="全国高校地理分布"),visualmap_opts=opts.VisualMapOpts(max_=max(province_counts['高校数量'])),)
)
map_chart.render("高校地理分布图.html")

  从图中我们可以发现高校数量最多是江苏省,拥有168所搞笑;长三角地区的高校明显高于其它地区,中部四川省高校最多,南部广东省高校最多,西部地区高校分布的数量相对较少;

3.2 全国不同类型大学数量情况

un_type = df['类型'].tolist()
result = Counter(un_type)
# 排序
d = sorted(result.items(), key=lambda x: x[1], reverse=True)
print(d)
key = [i[0] for i in d]
value = [i[1] for i in d]# 链式调用
bar = (Bar(init_opts=opts.InitOpts(  # 初始配置项theme=ThemeType.MACARONS,animation_opts=opts.AnimationOpts(animation_delay=1000, animation_easing="cubicOut"  # 初始动画延迟和缓动效果))).add_xaxis(xaxis_data=key)  # x轴.add_yaxis(series_name="全国不同类型大学数量情况", y_axis=value)  # y轴.set_global_opts(title_opts=opts.TitleOpts(title='', subtitle='',  # 标题配置和调整位置title_textstyle_opts=opts.TextStyleOpts(font_family='SimHei', font_size=25, font_weight='bold', color='red',), pos_left="90%", pos_top="10",),xaxis_opts=opts.AxisOpts(name='类型', axislabel_opts=opts.LabelOpts(rotate=45)),# 设置x名称和Label rotate解决标签名字过长使用yaxis_opts=opts.AxisOpts(name='数量'),))
bar.render("全国不同类型大学数量情况.html")


  从图中我们可以发现理工类和综合类的院校最多,也就是高考时理科照生多的原因;

3.3 高校类型与层次分析图

  接下来,我们利用PieBar组件来分析高校的类型与层次。通过饼图展示公办与民办高校的占比,通过条形图展示本科与专科高校的分布情况。这些图表不仅能够帮助我们了解高校的构成,还能揭示不同类型与层次高校之间的差异。

attr = df['公或民办'].tolist()
result = Counter(attr)
# 排序
d = sorted(result.items(), key=lambda x: x[1], reverse=True)
print(d)
key = [i[0] for i in d]
value = [i[1] for i in d]
pie = (Pie().add("公或民办类型数量",[list(z) for z in zip(key, value)],rosetype="radius",radius=["30%", "55%"],).set_global_opts(title_opts=opts.TitleOpts("公或民办类型数量"))
)
pie.render("公办与民办高校占比图.html")


  从图书可以看出高校有三种出资方式,分别是公办、民办和中外合作办学;其中公办的高校最多有2010所。

# 分析本科与专科高校的分布情况
undergraduate_vocational_distribution = df['本或专科'].value_counts()
undergraduate_vocational_distribution = undergraduate_vocational_distribution.reset_index()
undergraduate_vocational_distribution.columns = ['层次', '数量']# 创建条形图展示本科与专科高校的分布情况
bar_chart = (Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT)).add_xaxis(undergraduate_vocational_distribution['层次'].tolist()).add_yaxis("高校数量", undergraduate_vocational_distribution['数量'].tolist()).set_global_opts(title_opts=opts.TitleOpts(title="本科与专科高校分布情况"),xaxis_opts=opts.AxisOpts(name="层次"),yaxis_opts=opts.AxisOpts(name="数量"),)
)
bar_chart.render("本科与专科高校分布图.html")


  从图中可以发现高校中本科和专科数据差不多持平。

3.4 全国不同大学隶属情况

  最后,我们利用ScatterGraph组件分析城市与高校之间的关联。通过散点图展示各城市高校的数量与分布,或者通过关系图展示城市与高校之间的隶属关系。

attr = data['隶属于'].tolist()
result = Counter(attr)
# 排序
d = sorted(result.items(), key=lambda x: x[1], reverse=True)
print(d)
key = [i[0] for i in d]
value = [i[1] for i in d]
c = (Bar(init_opts=opts.InitOpts(theme=ThemeType.DARK)).add_xaxis(xaxis_data=key).add_yaxis("数量", y_axis=value).set_global_opts(title_opts=opts.TitleOpts(title="全国不同大学隶属情况"),datazoom_opts=[opts.DataZoomOpts(), opts.DataZoomOpts(type_="inside")],))
c.render_notebook()

  从图中可以看到各个不同单位管理高校的数量,其中河南省管理的高校数量最多,教育部直属管的高校有84所等

3.5 高校的坐标点位分析

  可以使用百度的地名地址解析接口,将高校的地址转成经纬度,经纬度转成热力图如下;

四、结论与展望

  通过本次全国高校数据集的可视化探索,我们不仅直观地展示了高校的地理分布、类型与层次、标签情况以及与城市的关联,还深刻理解了数据可视化的力量。它让我们能够以前所未有的方式洞察数据背后的故事,为教育决策提供了有力的支持。


http://www.ppmy.cn/news/1561512.html

相关文章

创建型模式4.原型模式

创建型模式 工厂方法模式(Factory Method Pattern)抽象工厂模式(Abstract Factory Pattern)建造者模式(Builder Pattern)原型模式(Prototype Pattern)单例模式(Singleto…

如何分析 Nginx 日志

分析 Nginx 日志可以帮助我们了解服务器性能、流量来源、用户行为,以及诊断问题(如错误和攻击)。以下是详细的分析方法: 1. 日志类型 Nginx 有两种主要日志: 访问日志 (Access Log):记录客户端对服务器的…

Python编程实例-机器学习中的Hinge Loss编程实现

机器学习中的Hinge Loss编程实现 文章目录 机器学习中的Hinge Loss编程实现1、机器学习中的损失函数是什么?2、什么是 Hinge Loss?3、Hinge Loss如何工作?4、Hinge Loss的优缺点5、Python语言实现6、总结Hinge Loss(铰链损失)在分类任务中至关重要,广泛应用于支持向量机 …

深入解析 ReentrantReadWriteLock 和 StampedLock 的源码

引言 在高并发环境中,读写锁(Read-Write Lock)是一种非常重要的同步工具。它们允许多个线程同时进行读操作,但在有写操作时确保独占访问。Java 提供了 ReentrantReadWriteLock 和 StampedLock 两种读写锁实现,分别适用…

NLP CH3复习

CH3 3.1 几种损失函数 3.2 激活函数性质 3.3 哪几种激活函数会发生梯度消失 3.4 为什么会梯度消失 3.5 如何解决梯度消失和过拟合 3.6 梯度下降的区别 3.6.1 梯度下降(GD) 全批量:在每次迭代中使用全部数据来计算损失函数的梯度。计算成本…

最好用的图文识别OCR -- PaddleOCR(2) 提高推理效率(PPOCR模型转ONNX模型进行推理)

在实际推理过程中,使用 PaddleOCR 模型时效率较慢,经测试每张图片的检测与识别平均耗时超过 5 秒,这在需要大规模自动化处理的场景中无法满足需求。为此,我尝试将 PaddleOCR 模型转换为 ONNX 格式进行推理,以提升效率。…

CV-MLLM经典论文解读|OneLLM: One Framework to Align All Modalities with Language

论文标题: OneLLM: One Framework to Align All Modalities with Language OneLLM:一个框架,将所有模态与语言对齐 论文链接: Pink: Unveiling the Power of Referential Comprehension for Multi-modal LLMs论文下载 论文作…

基于SPring Boot的高校就业招聘系统设计与实现(LW+源码+讲解)

专注于大学生项目实战开发,讲解,毕业答疑辅导,欢迎高校老师/同行前辈交流合作✌。 技术范围:SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容:…