pytorch中nn.Conv2d详解及参数设置原则

news/2025/1/8 5:41:47/

文章目录

  • 基础参数
      • 1. `in_channels` (输入通道数)
      • 2. `out_channels` (输出通道数)
      • 3. `kernel_size` (卷积核大小)
      • 4. `stride` (步幅)
      • 5. `padding` (填充)
      • 6. `dilation` (膨胀)
      • 7. `groups` (分组卷积)
      • 8. `bias` (偏置)
  • 如何设置参数?
      • 1. **`in_channels` 和 `out_channels`(输入通道数和输出通道数)**
      • 2. **`kernel_size`(卷积核大小)**
      • 3. **`stride`(步幅)**
      • 4. **`padding`(填充)**
      • 5. **`dilation`(膨胀卷积)**
      • 6. **`groups`(分组卷积)**
      • 7. **`bias`(偏置)**
      • 总结


基础参数

1. in_channels (输入通道数)

  • 定义:表示输入图像的通道数。例如,RGB图像的输入通道数为 3(红色、绿色和蓝色),灰度图像的输入通道数为 1。
  • 作用:指定输入数据的深度。卷积操作会针对每个通道应用滤波器。

实例

python">conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3)

在这个例子中,in_channels=3 表示输入是一个 RGB 图像(每个图像有 3 个通道),out_channels=64 表示卷积层会生成 64 个特征图。

2. out_channels (输出通道数)

  • 定义:表示卷积层的输出通道数,也就是卷积操作产生的特征图的数量。每个通道是由卷积滤波器生成的。
  • 作用:决定卷积层生成多少个特征图。out_channels 值越大,生成的特征图数量越多,网络的表达能力可能越强,但计算量也会增加。

实例

python">conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3)

在这个例子中,out_channels=64 表示卷积操作后生成 64 个特征图。

3. kernel_size (卷积核大小)

  • 定义:卷积核(滤波器)的大小,通常是一个正方形(例如 3x3 或 5x5)。它决定了每次卷积操作涉及的像素区域大小。
  • 作用:卷积核大小直接影响感受野(即每个卷积操作关注的区域)。卷积核越大,每个特征图表示的区域越广,但计算量也越大。

实例

python">conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3)

在这个例子中,kernel_size=3 表示卷积核的大小是 3x3。每次卷积操作会选择 3x3 的区域进行处理。

4. stride (步幅)

  • 定义:步幅控制卷积操作时卷积核滑动的步长。步幅通常是正整数,表示卷积核每次移动的像素数量。
  • 作用:步幅影响输出特征图的尺寸。步幅越大,输出特征图的尺寸越小(因为卷积核每次移动得更远)。通常,步幅为 1 时,卷积核每次移动一个像素,步幅为 2 时,卷积核每次移动两个像素。

实例

python">conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=2)

在这个例子中,stride=2 表示卷积核每次滑动 2 个像素,因此输出特征图的宽度和高度都将减半。

5. padding (填充)

  • 定义:填充是指在输入图像的边缘添加额外的像素。它的作用是确保卷积操作可以处理边缘的像素,同时可以控制输出特征图的尺寸。
  • 作用:填充可以保持输入和输出的尺寸相同(当步幅为 1 时)。常见的填充方式包括:
    • padding=1:表示在每个边上添加 1 个像素的填充。
    • padding='same':常见的用法,在很多框架中使用,表示填充的大小使得输入和输出的尺寸相同。

实例

python">conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, padding=1)

在这个例子中,padding=1 表示在输入图像的每个边上添加 1 个像素的填充,这样可以保持输出特征图的尺寸与输入图像相同(当步幅为 1 时)。

6. dilation (膨胀)

  • 定义:膨胀卷积是对卷积核应用间隔的技术,卷积核之间的元素不再是连续的,而是通过空洞来分隔。
  • 作用:膨胀卷积的作用是扩展感受野,能够捕捉更大的上下文信息,而不会增加参数量或计算量。

实例

python">conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, dilation=2)

在这个例子中,dilation=2 表示卷积核的元素之间间隔为 2,使得感受野扩大,但卷积核的实际大小保持不变。

7. groups (分组卷积)

  • 定义:分组卷积通过将输入通道分成若干组来实现卷积计算。每一组的卷积核只会对属于该组的输入通道进行卷积操作。
  • 作用:分组卷积可以减少计算量,并且在某些任务中(如深度可分离卷积)有助于提升网络性能。

实例

python">conv1 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=3, groups=3)

在这个例子中,groups=3 表示输入的 3 个通道会被分成 3 组,每组一个卷积核进行卷积操作。这样,卷积层的计算量减少。

8. bias (偏置)

  • 定义:偏置是卷积操作中的一个可学习参数。它会被加到每个卷积结果上,用于调整输出。
  • 作用:在卷积操作之后加上偏置,可以帮助模型更好地拟合训练数据。通常情况下,卷积层会默认有偏置,但可以通过设置 bias=False 来禁用。

实例

python">conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, bias=True)

在这个例子中,bias=True 表示卷积层会包含偏置。


如何设置参数?

1. in_channelsout_channels(输入通道数和输出通道数)

  • in_channels 由输入数据决定。例如,RGB 图像的 in_channels 为 3,灰度图像的 in_channels 为 1。通常在图像输入层,in_channels 是已知的。
  • out_channels 是一个非常重要的超参数,它影响网络的表达能力和计算量。增加 out_channels 可以增加网络的表达能力,但同时也会增加计算量和内存消耗。输出通道数的选择通常依赖于以下几个因素:
    • 任务复杂度:对于复杂的任务(如图像分类、目标检测),较大的 out_channels 值可以帮助网络学习更丰富的特征。
    • 网络深度:较深的网络可以逐步增加 out_channels,从而提高特征的抽象能力。
    • 计算资源:较大的 out_channels 会增加计算量,因此需要考虑计算资源和推理速度。

实例
对于图像分类任务,通常在第一层使用较小的 out_channels(如 64 或 128),然后在后续层逐步增加(如 256、512 等)。

python">conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3)
conv2 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3)

2. kernel_size(卷积核大小)

  • 卷积核大小(如 3x3 或 5x5)决定了每次卷积操作所查看的图像区域。
  • 3x3 卷积核 是最常用的选择,它在很多现代网络架构中表现出色,原因是:
    • 计算效率:相对于较大的卷积核(如 5x5、7x7),3x3 卷积核可以通过堆叠多个层来扩展感受野,从而节省计算量。例如,两个 3x3 的卷积核可以实现与 5x5 卷积核相同的感受野,但计算量较小。
    • 深度卷积结构:3x3 卷积核有助于建立深度网络结构,通过多个层级来学习复杂的特征。
  • 大卷积核(如 5x5 或 7x7) 通常用于初始层,尤其是当输入图像非常大时,可以一次性捕获更多的空间信息。

实例

  • 如果网络较浅,可以使用较大的卷积核来捕捉较大的特征。
  • 在深度网络中,可以使用 3x3 卷积核,堆叠多个卷积层来逐步提取更高阶的特征。
python">conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3)  # 常见的3x3卷积
conv2 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=5)  # 较大的卷积核

3. stride(步幅)

  • 步幅决定了卷积核滑动的速度,影响输出特征图的尺寸。步幅越大,输出特征图的尺寸越小。
  • 在下采样(如池化)时,通常会选择步幅为 2,以减少特征图的尺寸并增加感受野。
  • 对于大部分应用,步幅通常设置为 1,特别是在中间层,用于精细提取特征;而在初始层或下采样层,步幅可以设置为 2。

实例

  • 如果希望减少输出特征图的尺寸,可以设置步幅为 2,例如在下采样阶段。
  • 如果需要更精细的特征提取,步幅通常设置为 1。
python">conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=2)  # 下采样
conv2 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1)  # 特征提取

4. padding(填充)

  • 填充可以在输入图像的边缘添加额外的像素,避免卷积操作导致的尺寸缩小。合理设置填充有助于保持特征图的尺寸,尤其是在步幅为 1 时。
  • same 填充:当步幅为 1 时,使用填充可以保证输入和输出的尺寸相同。常见的做法是根据卷积核的大小自动计算填充量,以保持尺寸不变。
  • 在较深的网络中,通常使用填充保持特征图的空间尺寸,避免在多个卷积层中丢失过多的空间信息。

实例

  • 如果想要输入和输出具有相同的空间尺寸,可以使用 padding=1 对于 3x3 卷积核。
  • 如果希望特征图缩小,可以减少填充量,或者不使用填充。
python">conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, padding=1)  # 输出尺寸不变
conv2 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, padding=0)  # 输出尺寸缩小

5. dilation(膨胀卷积)

  • 膨胀卷积通过增加卷积核元素之间的间隔来扩大感受野,通常用于捕捉长距离依赖。
  • 在任务中,如果需要捕捉较大的上下文信息(例如语义分割、目标检测),可以使用膨胀卷积来增加感受野而不增加计算量。

实例

  • 在语义分割中,膨胀卷积常用于提取更大范围的上下文信息。
python">conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, dilation=2)  # 膨胀卷积

6. groups(分组卷积)

  • 分组卷积通过将输入分成多个组进行卷积,可以有效减少计算量和内存消耗,常见于 深度可分离卷积(depthwise separable convolutions)。
  • 分组卷积有助于减少参数数量,同时还可以增加网络的计算效率,特别是在移动端或资源受限的设备上。

实例

  • 在移动端模型(如 MobileNet)中,通常使用分组卷积来减少计算量。
python">conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, groups=3)  # 分组卷积

7. bias(偏置)

  • 在大多数情况下,卷积层的偏置是启用的(bias=True),这有助于网络学习更灵活的偏移量。仅在特殊情况下才禁用偏置,如批量归一化层后面。

实例

  • 默认情况下,bias=True 是常见的设置。
python">conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, bias=True)

总结

设计卷积神经网络时,合理选择这些参数需要结合实际需求:

  • 对于 简单任务,可以选择较小的输出通道数和标准的 3x3 卷积核。
  • 对于 复杂任务,可以使用较大的输出通道数和堆叠多个卷积层。
  • 使用 步幅填充 控制特征图的尺寸变化,保持适当的空间信息。
  • 资源受限的环境 中,可以选择分组卷积和膨胀卷积来减少计算量。

http://www.ppmy.cn/news/1560657.html

相关文章

5G终端串口AT命令 FM650 常用命令

5G终端串口AT命令 FM650 常用命令 5G终端串口AT命令 FM650 常用命令 #状态查询 MODULE_PORT/dev/ttyUSB0echo -e "ATE0\r\n" > $MODULE_PORT echo -e "ATGTUSBMODE?\r\n" > $MODULE_PORT echo -e "ATGTRAT?" > $MODULE_PORT ec…

【JMeter详解】

JMeter详解 Apache JMeter 是一个开源的、100%纯Java应用程序,设计用于负载测试和性能测量。它最初是为测试Web应用程序而设计的,但后来扩展到其他测试功能。JMeter可以用来对静态和动态资源(如静态文件、Servlets、Perl脚本、Java对象、数据…

多分类的损失函数

在多分类任务中,常用的损失函数能够衡量模型输出的类别分布与目标类别之间的差异,帮助模型学习更准确的分类能力。以下是多分类任务中常用的损失函数: 1. 交叉熵损失(Cross-Entropy Loss) 公式: CrossEntropyLoss = − 1 N ∑ i =

logback日志文件多环境配置路径

项目中遇到问题,springboot项目 本地jar包部署到现场后,经常遇到现场的日志存放的路径会更改,经过查阅,有两种方式,下面简单说明一下。 一、第一种 启动jar包时 添加参数 --logging.configF:\hgtest\config\logback.x…

cut-命令详解

一、命令 1.cut列截取命令 cut命令的默认分隔符是制表符 2.参数: -f 列号 #提取第几列-d 分隔符 #按照指定分隔符分割列-c 字符范围 #不依赖分隔符来区分列,而是通过字符范围(行首为0)来进行字段提取。“n-”表…

【学习总结|DAY027】JAVA操作数据库

在后端开发中,Java 操作数据库是核心技能。本文将详细介绍 JDBC、MyBatis 及 SpringBoot 配置文件相关知识,并给出实用代码示例。 一、JDBC(Java DataBase Connectivity) (一)简介 JDBC 是 sun 公司定义…

vscode实用插件(持续更新)

目录 Git History Diff Git Graph Error Lens Git History Diff 用于将当前分支的某个文件夹与远程分支的相同文件夹做对比,方便代码评审!解决了为了一个问题而多次commit,导致代码不好评审,即不晓得和远程分支相比&#xff0…

【单片机】NPN+PNP组成的高边开关无法完全关断

项目场景: 采用NPNPNP组成高边开关,由单片机GPIO控制。 问题描述 原理图如下。发现CPS_ENABLE为低电平时,3.3V_C的电平不为0,约为0.9V。 原因分析与解决方案: 从原理上分析和独立电路测试没有问题,那么…