【机器学习】机器学习的基本分类-半监督学习(Semi-supervised Learning)

news/2025/1/2 1:34:27/

半监督学习是一种介于监督学习无监督学习之间的学习>机器学习方法。它利用少量的标注数据(有监督数据)和大量的未标注数据(无监督数据)来进行模型训练,从而在标注数据不足的情况下,提升模型的性能。


半监督学习的特点

  1. 数据特性
    • 标注数据成本高(如需要人工标注)。
    • 未标注数据易得且数量庞大。
  2. 目标
    • 使用未标注数据改进监督学习模型的性能。
  3. 假设
    • 相似性假设(Cluster Assumption):相似的数据点有相同的类别。
    • 平滑性假设(Smoothness Assumption):靠近的样本具有相似的输出。
    • 流形假设(Manifold Assumption):数据点在低维流形上分布。

半监督学习的算法分类

1. 基于生成模型

使用生成模型捕捉数据分布,从而利用未标注数据。
典型方法:

  • 高斯混合模型(GMM)
  • 变分自编码器(VAE)
2. 自训练(Self-training)
  • 思路
    • 使用初始标注数据训练一个模型;
    • 让模型对未标注数据进行预测,将置信度高的预测结果作为伪标签;
    • 使用新增的伪标签更新模型。
  • 优点:简单易实现。
  • 缺点:伪标签错误会导致模型退化。
3. 协同训练(Co-training)
  • 思路
    • 使用两种互补的特征视角分别训练两个模型;
    • 每个模型生成伪标签并互相标注数据。
  • 典型应用:网页分类、信息检索。
4. 图半监督学习
  • 思路
    • 将数据建模为图结构,节点表示样本,边权重表示样本相似度;
    • 使用标签传播算法(Label Propagation)在图上传播标签。
  • 典型方法
    • 标签传播(Label Propagation)
    • 谱图方法(Graph Laplacian)
5. 对比学习
  • 思路
    • 在无监督情况下学习样本的特征表示,使相似样本在表示空间中更接近。
    • 然后结合标注数据进行分类或回归。
6. 一致性正则化(Consistency Regularization)
  • 思路
    • 假设模型在未标注数据上的预测应对输入的轻微扰动保持一致;
    • 对输入添加噪声或数据增强,约束模型输出的稳定性。
  • 典型方法:Pseudo-labeling,Mean Teacher。

常见半监督学习模型

1. Semi-supervised SVM(S^3VM)
  • 通过引入未标注数据的目标函数,增强决策边界的平滑性。
2. 半监督生成对抗网络(Semi-supervised GANs)
  • 使用生成对抗网络(GAN)生成数据并改进分类器性能。
3. Ladder Networks
  • 在网络中加入无监督分支,通过重构未标注数据,辅助训练。

半监督学习的损失函数

  1. 监督部分损失(有标注数据):

    L_{\text{sup}} = \frac{1}{N} \sum_{i=1}^N \mathcal{L}(f(x_i), y_i)
  2. 无监督部分损失(未标注数据):

    • 伪标签损失

                                           L_{\text{unsup}} = \frac{1}{M} \sum_{j=1}^M \mathcal{L}(f(x_j), \hat{y}_j)
    • 一致性正则化损失

                                          L_{\text{consistency}} = \frac{1}{M} \sum_{j=1}^M ||f(x_j) - f(x_j')||^2
      x_j' 为添加扰动后的样本。
  3. 总损失

    L_{\text{total}} = L_{\text{sup}} + \lambda L_{\text{unsup}}

应用场景

  1. 自然语言处理(NLP)
    • 情感分析、文本分类
  2. 计算机视觉
    • 图像分类、目标检测。
  3. 医学影像分析
    • 标注数据稀缺场景下的疾病诊断。
  4. 推荐系统
    • 利用未标注用户行为改进推荐质量。

Python 示例:自训练方法

以下是一个简单的自训练实现伪代码:

from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
import numpy as np# 生成数据集
X, y = make_classification(n_samples=1000, n_features=20, n_classes=2, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 模拟未标注数据
X_train_labeled, X_train_unlabeled, y_train_labeled, _ = train_test_split(X_train, y_train, test_size=0.7, random_state=42)# 初始化模型
model = RandomForestClassifier()# 训练初始模型
model.fit(X_train_labeled, y_train_labeled)# 自训练过程
for _ in range(5):  # 多次迭代# 对未标注数据预测pseudo_labels = model.predict(X_train_unlabeled)pseudo_probs = model.predict_proba(X_train_unlabeled).max(axis=1)# 筛选高置信度样本high_confidence_idx = pseudo_probs > 0.9X_high_confidence = X_train_unlabeled[high_confidence_idx]y_high_confidence = pseudo_labels[high_confidence_idx]# 合并伪标签数据X_train_labeled = np.vstack((X_train_labeled, X_high_confidence))y_train_labeled = np.hstack((y_train_labeled, y_high_confidence))# 移除已标注的未标注数据X_train_unlabeled = X_train_unlabeled[~high_confidence_idx]# 重新训练模型model.fit(X_train_labeled, y_train_labeled)# 测试模型
accuracy = model.score(X_test, y_test)
print(f"Accuracy: {accuracy:.2f}")

输出结果

Accuracy: 0.84


总结

半监督学习通过利用未标注数据的潜在信息,在标注数据有限的场景下显著提高了模型的性能。根据具体任务和数据特点,可以选择不同的半监督方法来优化模型效果。


http://www.ppmy.cn/news/1559304.html

相关文章

接口测试Day04-postman生成测试报告ihrm项目

测试报告-利用newman插件 安装node.js 安装 双击 .msi 文件,一路下一步安装即可。无需特殊设定。测试安装成功 npm -v 安装npm 安装newman 安装newman npm install -g newman试安装成功 newman -v安装newman插件 - 扩展版 npm install -g newman-reporter-htmlex…

QT集成IntelRealSense双目摄像头2,集成OpenGL

上一篇文章写了如何把IntelRealSense摄像头的SDK集成到QT项目,并成功采集数据,在没有用OpenCV的情况下完成色彩数据,以及深度数据的显示。 具体地址:https://blog.csdn.net/qujia121qu/article/details/144734163 本次主要写如何…

C语言导航 6.2二维数组

第二节 二维数组 二维数组的定义 二维数组的初始化 二维数组的引用 6.2.1二维数组的定义 1.格式:类型 数组名[常量表达式1][常量表达式2]; 2.说明:定义二维数组即在内存中开辟一块连续的常量表达式1 *常量表达式2*类型所占字节数大小的…

macos安装maven以及.bash_profile文件优化

文章目录 下载和安装maven本地仓库配置国内镜像仓库配置.bash_profile文件优化 下载和安装maven maven下载地址 存放在/Library/Java/env/maven目录 本地仓库配置 在maven-3.9.9目录下创建maven-repo目录作为本地文件仓库打开setting配置文件 在setting标签下,添…

ACPI PM Timer

ACPI PM Timer 概述: ACPI PM Timer是一个非常简单的计时器,它以 3.579545 MHz 运行,在计数器溢出时生成系统控制中断(SCI)。它精度较低,建议使用其他定时器,如HPET或APIC定时器。 检测ACPI P…

【畅购商城】详情页详情之商品详情

1.构建详情页 步骤0:确定访问路径 http://localhost:3000/Goods?id1 步骤二:复制 ~/static/goods.html 内容,导入第三方资源(css、js) head: {title: 列表页面,link: [{rel:stylesheet,href: /style/goods.css},{re…

【服务器】上传文件到服务器并训练深度学习模型下载服务器文件到本地

前言:本文教程为,上传文件到服务器并训练深度学习模型,与下载服务器文件到本地。演示指令输入,完整的上传文件到服务器,并训练模型过程;并演示完整的下载服务器文件到本地的过程。 本文使用的服务器为云服…

yolov6算法及其改进

yolov6算法及其改进 1、YOLOV6简介2、RepVGG重参思想3、YOLOv6架构改进3.1、Backbone方面3.2、SPP改进3.3、Neck改进3.4、Head改进 4、正负样本匹配与损失函数4.1、TaskAligned样本匹配4.2、VFL Loss分类损失函数4.3、SIOU损失函数4.4、DFL损失函数 1、YOLOV6简介 YOLOv6设计主…