Pytorch | 利用SMI-FGRM针对CIFAR10上的ResNet分类器进行对抗攻击

news/2025/1/1 3:02:31/

Pytorch | 利用I-FGSSM针对CIFAR10上的ResNet分类器进行对抗攻击

  • CIFAR数据集
  • SMI-FGRM介绍
    • SMI-FGRM算法流程
  • SMI-FGRM代码实现
    • SMI-FGRM算法实现
    • 攻击效果
  • 代码汇总
    • smifgrm.py
    • train.py
    • advtest.py

之前已经针对CIFAR10训练了多种分类器:
Pytorch | 从零构建AlexNet对CIFAR10进行分类
Pytorch | 从零构建Vgg对CIFAR10进行分类
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
Pytorch | 从零构建ResNet对CIFAR10进行分类
Pytorch | 从零构建MobileNet对CIFAR10进行分类
Pytorch | 从零构建EfficientNet对CIFAR10进行分类
Pytorch | 从零构建ParNet对CIFAR10进行分类

也实现了一些攻击算法:
Pytorch | 利用FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用BIM/I-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用MI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用NI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用PI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用VMI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用VNI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用EMI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用AI-FGTM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用I-FGSSM针对CIFAR10上的ResNet分类器进行对抗攻击

本篇文章我们使用Pytorch实现SMI-FGRM对CIFAR10上的ResNet分类器进行攻击.

CIFAR数据集

CIFAR-10数据集是由加拿大高级研究所(CIFAR)收集整理的用于图像识别研究的常用数据集,基本信息如下:

  • 数据规模:该数据集包含60,000张彩色图像,分为10个不同的类别,每个类别有6,000张图像。通常将其中50,000张作为训练集,用于模型的训练;10,000张作为测试集,用于评估模型的性能。
  • 图像尺寸:所有图像的尺寸均为32×32像素,这相对较小的尺寸使得模型在处理该数据集时能够相对快速地进行训练和推理,但也增加了图像分类的难度。
  • 类别内容:涵盖了飞机(plane)、汽车(car)、鸟(bird)、猫(cat)、鹿(deer)、狗(dog)、青蛙(frog)、马(horse)、船(ship)、卡车(truck)这10个不同的类别,这些类别都是现实世界中常见的物体,具有一定的代表性。

下面是一些示例样本:
在这里插入图片描述

SMI-FGRM介绍

SMI-FGRM(Sampling-based Momentum Iterative Fast Gradient Rescaling Method)是一种基于采样的动量迭代快速梯度重缩放方法,用于提升对抗攻击的可迁移性。它在传统的MI-FGSM算法基础上,引入了数据重缩放和深度优先采样策略,以更准确地近似梯度方向,从而提高攻击效果。

SMI-FGRM算法流程

  1. 初始化
    • 设置步长 α = ϵ / T \alpha=\epsilon/T α=ϵ/T,其中 ϵ \epsilon ϵ 是最大扰动, T T T 是迭代次数。初始化对抗样本 x 0 a d v = x x^{adv}_0 = x x0adv=x,动量 g 0 = 0 g_0 = 0 g0=0
  2. 迭代过程( t = 0 t = 0 t=0 T − 1 T - 1 T1
    • 计算采样梯度 g ^ t + 1 \hat{g}_{t + 1} g^t+1
      • 根据深度优先采样方法(DFSM),在输入空间中对当前点的邻居进行采样,计算采样点和原始图像的平均梯度。具体公式为 g ^ t = 1 N + 1 ∑ i = 0 N ∇ J ( x t i , y ; θ ) \hat{g}_{t}=\frac{1}{N + 1} \sum_{i = 0}^{N} \nabla J\left(x_{t}^{i}, y ; \theta\right) g^t=N+11i=0NJ(xti,y;θ),其中 x t 0 = x x_{t}^{0}=x xt0=x ξ i ∼ U [ − ( β ⋅ ϵ ) d , ( β ⋅ ϵ ) d ] \xi_{i} \sim U[-(\beta \cdot \epsilon)^{d},(\beta \cdot \epsilon)^{d}] ξiU[(βϵ)d,(βϵ)d] N N N 是采样数量, β \beta β 是确定采样范围的超参数, ∇ J ( x t i , y ; θ ) \nabla J\left(x_{t}^{i}, y ; \theta\right) J(xti,y;θ) 是损失函数 J J J 关于输入 x t i x_{t}^{i} xti 的梯度。
    • 更新动量 g t + 1 g_{t + 1} gt+1
      • 使用计算得到的采样梯度 g ^ t + 1 \hat{g}_{t + 1} g^t+1 更新动量 g t + 1 g_{t + 1} gt+1,公式为 g t + 1 = μ g t + g ^ t + 1 ∥ g ^ t + 1 ∥ 1 g_{t + 1}=\mu g_{t}+\frac{\hat{g}_{t + 1}}{\left\|\hat{g}_{t + 1}\right\|_{1}} gt+1=μgt+g^t+11g^t+1,其中 μ \mu μ 是衰减因子。
    • 更新对抗样本 x t + 1 a d v x^{adv}_{t + 1} xt+1adv
      • 通过快速梯度重缩放方法(FGRM)计算梯度缩放后的扰动,更新对抗样本。具体为 x t + 1 a d v = x t a d v + α ⋅ r e s c a l e ( g t + 1 ) x^{adv}_{t + 1}=x^{adv}_{t}+\alpha \cdot rescale(g_{t + 1}) xt+1adv=xtadv+αrescale(gt+1),其中 r e s c a l e ( g ) rescale(g) rescale(g) 是梯度重缩放函数,定义为 r e s c a l e ( g ) = c ∗ s i g n ( g ) ⊙ f ( n o r m ( l o g 2 ∣ g ∣ ) ) rescale(g)=c * sign(g) \odot f\left(norm\left(log _{2}|g|\right)\right) rescale(g)=csign(g)f(norm(log2g)) n o r m ( x ) = x − m e a n ( x ) s t d ( x ) norm(x)=\frac{x - mean(x)}{std(x)} norm(x)=std(x)xmean(x) f ( x ) = σ = 1 1 + e − x f(x)=\sigma=\frac{1}{1 + e^{-x}} f(x)=σ=1+ex1 c c c 是重缩放因子。
  3. 返回结果
    • 迭代结束后,返回最终的对抗样本 x a d v = x T a d v x^{adv}=x^{adv}_T xadv=xTadv

SMI-FGRM代码实现

sampling_num=0 时,SMI-FGRM退化为MI-FGRM.

SMI-FGRM算法实现

python">import torch
import torch.nn as nndef SMI_FGRM(model, criterion, original_images, labels, epsilon, num_iterations=10, decay=1, sampling_num=12, sampling_beta=1.5, rescale_c=2):"""SMI-FGRM (Sampling-based Momentum Iterative Fast Gradient Rescaling Method)参数:- model: 要攻击的模型- criterion: 损失函数- original_images: 原始图像- labels: 原始图像的标签- epsilon: 最大扰动幅度- num_iterations: 迭代次数- decay: 动量衰减因子- sampling_num: 采样数量- sampling_beta: 采样范围参数- rescale_c: 重缩放因子"""alpha = epsilon / num_iterationsperturbed_images = original_images.clone().detach().requires_grad_(True)momentum = torch.zeros_like(original_images).detach().to(original_images.device)for _ in range(num_iterations):# 深度优先采样sampled_gradients = []x_i = perturbed_images.clone()for _ in range(sampling_num):xi = x_i + torch.randn_like(x_i) * (sampling_beta * epsilon)sampled_gradients.append(compute_gradient(model, criterion, xi, labels))x_i = xisampled_gradients.append(compute_gradient(model, criterion, perturbed_images, labels))g_hat = torch.mean(torch.stack(sampled_gradients), dim=0)# 更新动量momentum = decay * momentum + g_hat / torch.sum(torch.abs(g_hat), dim=(1, 2, 3), keepdim=True)# 快速梯度重缩放rescaled_gradient = rescale_gradient(momentum, rescale_c)# 更新对抗样本perturbed_images = perturbed_images + alpha * rescaled_gradientperturbed_images = torch.clamp(perturbed_images, original_images - epsilon, original_images + epsilon)perturbed_images = perturbed_images.detach().requires_grad_(True)return perturbed_imagesdef rescale_gradient(g, c):"""梯度重缩放函数参数:- g: 梯度- c: 重缩放因子"""normed_log_gradient = (torch.log2(torch.abs(g)) - torch.mean(torch.log2(torch.abs(g)), dim=(1, 2, 3), keepdim=True)) / torch.std(torch.log2(torch.abs(g)), dim=(1, 2, 3), keepdim=True)sigmoid_applied = 1 / (1 + torch.exp(-normed_log_gradient))return c * torch.sign(g) * sigmoid_applieddef compute_gradient(model, criterion, x, labels):"""计算梯度参数:- model: 模型- criterion: 损失函数- x: 输入图像- labels: 标签"""x = x.clone().detach().requires_grad_(True)outputs = model(x)loss = criterion(outputs, labels)model.zero_grad()loss.backward()return x.grad.data

攻击效果

在这里插入图片描述

代码汇总

smifgrm.py

python">import torch
import torch.nn as nndef SMI_FGRM(model, criterion, original_images, labels, epsilon, num_iterations=10, decay=1, sampling_num=12, sampling_beta=1.5, rescale_c=2):"""SMI-FGRM (Sampling-based Momentum Iterative Fast Gradient Rescaling Method)参数:- model: 要攻击的模型- criterion: 损失函数- original_images: 原始图像- labels: 原始图像的标签- epsilon: 最大扰动幅度- num_iterations: 迭代次数- decay: 动量衰减因子- sampling_num: 采样数量- sampling_beta: 采样范围参数- rescale_c: 重缩放因子"""alpha = epsilon / num_iterationsperturbed_images = original_images.clone().detach().requires_grad_(True)momentum = torch.zeros_like(original_images).detach().to(original_images.device)for _ in range(num_iterations):# 深度优先采样sampled_gradients = []x_i = perturbed_images.clone()for _ in range(sampling_num):xi = x_i + torch.randn_like(x_i) * (sampling_beta * epsilon)sampled_gradients.append(compute_gradient(model, criterion, xi, labels))x_i = xisampled_gradients.append(compute_gradient(model, criterion, perturbed_images, labels))g_hat = torch.mean(torch.stack(sampled_gradients), dim=0)# 更新动量momentum = decay * momentum + g_hat / torch.sum(torch.abs(g_hat), dim=(1, 2, 3), keepdim=True)# 快速梯度重缩放rescaled_gradient = rescale_gradient(momentum, rescale_c)# 更新对抗样本perturbed_images = perturbed_images + alpha * rescaled_gradientperturbed_images = torch.clamp(perturbed_images, original_images - epsilon, original_images + epsilon)perturbed_images = perturbed_images.detach().requires_grad_(True)return perturbed_imagesdef rescale_gradient(g, c):"""梯度重缩放函数参数:- g: 梯度- c: 重缩放因子"""normed_log_gradient = (torch.log2(torch.abs(g)) - torch.mean(torch.log2(torch.abs(g)), dim=(1, 2, 3), keepdim=True)) / torch.std(torch.log2(torch.abs(g)), dim=(1, 2, 3), keepdim=True)sigmoid_applied = 1 / (1 + torch.exp(-normed_log_gradient))return c * torch.sign(g) * sigmoid_applieddef compute_gradient(model, criterion, x, labels):"""计算梯度参数:- model: 模型- criterion: 损失函数- x: 输入图像- labels: 标签"""x = x.clone().detach().requires_grad_(True)outputs = model(x)loss = criterion(outputs, labels)model.zero_grad()loss.backward()return x.grad.data

train.py

python">import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from models import ResNet18# 数据预处理
transform_train = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])transform_test = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 加载Cifar10训练集和测试集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=False, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)# 定义设备(GPU或CPU)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")# 初始化模型
model = ResNet18(num_classes=10)
model.to(device)# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)if __name__ == "__main__":# 训练模型for epoch in range(10):  # 可以根据实际情况调整训练轮数running_loss = 0.0for i, data in enumerate(trainloader, 0):inputs, labels = data[0].to(device), data[1].to(device)optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()if i % 100 == 99:print(f'Epoch {epoch + 1}, Batch {i + 1}: Loss = {running_loss / 100}')running_loss = 0.0torch.save(model.state_dict(), f'weights/epoch_{epoch + 1}.pth')print('Finished Training')

advtest.py

python">import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from models import *
from attacks import *
import ssl
import os
from PIL import Image
import matplotlib.pyplot as pltssl._create_default_https_context = ssl._create_unverified_context# 定义数据预处理操作
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.491, 0.482, 0.446), (0.247, 0.243, 0.261))])# 加载CIFAR10测试集
testset = torchvision.datasets.CIFAR10(root='./data', train=False,download=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=128,shuffle=False, num_workers=2)# 定义设备(GPU优先,若可用)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")model = ResNet18(num_classes=10).to(device)criterion = nn.CrossEntropyLoss()# 加载模型权重
weights_path = "weights/epoch_10.pth"
model.load_state_dict(torch.load(weights_path, map_location=device))if __name__ == "__main__":# 在测试集上进行FGSM攻击并评估准确率model.eval()  # 设置为评估模式correct = 0total = 0epsilon = 16 / 255  # 可以调整扰动强度for data in testloader:original_images, labels = data[0].to(device), data[1].to(device)original_images.requires_grad = Trueattack_name = 'SMI-FGRM'if attack_name == 'FGSM':perturbed_images = FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'BIM':perturbed_images = BIM(model, criterion, original_images, labels, epsilon)elif attack_name == 'MI-FGSM':perturbed_images = MI_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'NI-FGSM':perturbed_images = NI_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'PI-FGSM':perturbed_images = PI_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'VMI-FGSM':perturbed_images = VMI_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'VNI-FGSM':perturbed_images = VNI_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'EMI-FGSM':perturbed_images = EMI_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'AI-FGTM':perturbed_images = AI_FGTM(model, criterion, original_images, labels, epsilon)elif attack_name == 'I-FGSSM':perturbed_images = I_FGSSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'SMI-FGRM':perturbed_images = SMI_FGRM(model, criterion, original_images, labels, epsilon)perturbed_outputs = model(perturbed_images)_, predicted = torch.max(perturbed_outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()accuracy = 100 * correct / total# Attack Success RateASR = 100 - accuracyprint(f'Load ResNet Model Weight from {weights_path}')print(f'epsilon: {epsilon:.4f}')print(f'ASR of {attack_name} : {ASR :.2f}%')

http://www.ppmy.cn/news/1559107.html

相关文章

Docker--Bitnami/redis

Bitnami package for Redis What is Redis? Redis is an open source, advanced key-value store. It is often referred to as a data structure server since keys can contain strings, hashes, lists, sets and sorted sets. Overview of Redis⁠ Disclaimer: Redis is a…

高级技术文章:使用 Kotlin 和 Unirest 构建高效的 Facebook 图像爬虫

引言 随着大数据和人工智能技术的发展,社交媒体数据的价值日益凸显。Facebook 作为全球最大的社交平台之一,拥有海量的用户生成内容。本文旨在指导开发者如何通过编程手段,合法合规地从 Facebook 获取图像数据,以支持研究和商业分…

HarmonyOS NEXT 实战之元服务:静态案例效果--- 手机一键加速、手机垃圾清理

背景: 前几篇学习了元服务,后面几期就让我们开发简单的元服务吧,里面丰富的内容大家自己加,本期案例 仅供参考 先上本期效果图 ,里面图片自行替换 效果图1完整代码案例如下: import { authentication } …

美国近期历史

美国近期历史可以追溯到20世纪末的1990年代开始。以下是一些重要事件和发展: 1990年代初,美国经历了一系列国内外事件,包括海湾战争(1990-1991),这是一场由联合国主导的军事行动,旨在驱逐伊拉克…

Unity游戏环境交互系统

概述 交互功能使用同一个按钮或按钮列表,在不同情况下显示不同的内容,按下执行不同的操作。 按选项个数分类 环境交互系统可分为两种,单选项交互,一般使用射线检测;多选项交互,一般使用范围检测。第一人…

STM32-KEIL5中相关设置

1、自定义关键字设置,以及自定义快捷键设置 参考网站:Keil自定义关键字、 快捷键-电子发烧友网

【C++】do-while 循环

博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 💯前言💯1. 介绍 do-while 语法格式1.1 基本语法1.2 do-while 与 while/for 区别 💯2. 执行流程分析2.1 执行流程图2.2 分析比较 💯3. 实例分析3.1 课上例子…

Spark生态圈

Spark 主要用于替代Hadoop中的 MapReduce 计算模型。存储依然可以使用 HDFS,但是中间结果可以存放在内存中;调度可以使用 Spark 内置的,也可以使用更成熟的调度系统 YARN 等。 Spark有完善的生态圈: Spark Core:实现了…