【Sentinel】流控效果与热点参数限流

news/2024/12/29 8:24:17/

目录

1.流控效果

1.1.warm up

2.2.排队等待

 1.3.总结

2.热点参数限流

2.1.全局参数限流

2.2.热点参数限流

2.3.案例

1.流控效果

在流控的高级选项中,还有一个流控效果选项:

流控效果是指请求达到流控阈值时应该采取的措施,包括三种:

  • 快速失败:达到阈值后,新的请求会被立即拒绝并抛出FlowException异常。是默认的处理方式。

  • warm up:预热模式,对超出阈值的请求同样是拒绝并抛出异常。但这种模式阈值会动态变化,从一个较小值逐渐增加到最大阈值。

  • 排队等待:让所有的请求按照先后次序排队执行,两个请求的间隔不能小于指定时长  

1.1.warm up

阈值一般是一个微服务能承担的最大QPS,但是一个服务刚刚启动时,一切资源尚未初始化(冷启

),如果直接将QPS跑到最大值,可能导致服务瞬间宕机。

warm up也叫预热模式,是应对服务冷启动的一种方案。请求阈值初始值是 maxThreshold /

coldFactor,持续指定时长后,逐渐提高到maxThreshold值。而coldFactor的默认值是3.

例如,我设置QPS的maxThreshold为10,预热时间为5秒,那么初始阈值就是 10 / 3 ,也就是3,
 

然后在5秒后逐渐增长到10.

案例

需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用warm up效果,预热时长为5秒

1)配置流控规则:

2)Jmeter测试

选择《流控效果,warm up》:

QPS为10.

刚刚启动时,大部分请求失败,成功的只有3个,说明QPS被限定在3:

 

随着时间推移,成功比例越来越高:

到Sentinel控制台查看实时监控:

 一段时间后:

2.2.排队等待

当请求超过QPS阈值时,快速失败和warm up 会拒绝新的请求并抛出异常。

而排队等待则是让所有请求进入一个队列中,然后按照阈值允许的时间间隔依次执行。后来的请求必须等待前面执行完成,如果请求预期的等待时间超出最大时长,则会被拒绝。

工作原理

例如:QPS = 5,意味着每200ms处理一个队列中的请求;timeout = 2000,意味着预期等待时长超过2000ms的请求会被拒绝并抛出异常。

那什么叫做预期等待时长呢?

比如现在一下子来了12 个请求,因为每200ms执行一个请求,那么:

  • 第6个请求的预期等待时长 = 200 * (6 - 1) = 1000ms

  • 第12个请求的预期等待时长 = 200 * (12-1) = 2200ms

现在,第1秒同时接收到10个请求,但第2秒只有1个请求,此时QPS的曲线这样的:

如果使用队列模式做流控,所有进入的请求都要排队,以固定的200ms的间隔执行,QPS会变的很

平滑:

平滑的QPS曲线,对于服务器来说是更友好的。

案例

需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用排队的流控效果,超时时长设置为5s

1)添加流控规则

2)Jmeter测试

选择《流控效果,队列》:

 

QPS为15,已经超过了我们设定的10。

如果是之前的 快速失败、warmup模式,超出的请求应该会直接报错。

但是我们看看队列模式的运行结果:

全部都通过了。

再去sentinel查看实时监控的QPS曲线:

QPS非常平滑,一致保持在10,但是超出的请求没有被拒绝,而是放入队列。因此响应时间(等待时间)会越来越长。

当队列满了以后,才会有部分请求失败:

 1.3.总结

流控效果有哪些?

  • 快速失败:QPS超过阈值时,拒绝新的请求

  • warm up: QPS超过阈值时,拒绝新的请求;QPS阈值是逐渐提升的,可以避免冷启动时高并发导致服务宕机。

  • 排队等待:请求会进入队列,按照阈值允许的时间间隔依次执行请求;如果请求预期等待时长大于超时时间,直接拒绝

2.热点参数限流

之前的限流是统计访问某个资源的所有请求,判断是否超过QPS阈值。而热点参数限流是分别统计

参数值相同的请求,判断是否超过QPS阈值。

2.1.全局参数限流

例如,一个根据id查询商品的接口:

访问/goods/{id}的请求中,id参数值会有变化,热点参数限流会根据参数值分别统计QPS,统计结

果:  

当id=1的请求触发阈值被限流时,id值不为1的请求不受影响。

配置示例:

代表的含义是:对hot这个资源的0号参数(第一个参数)做统计,每1秒相同参数值的请求数不能

超过5

2.2.热点参数限流

刚才的配置中,对查询商品这个接口的所有商品一视同仁,QPS都限定为5.

而在实际开发中,可能部分商品是热点商品,例如秒杀商品,我们希望这部分商品的QPS限制与其

它商品不一样,高一些。那就需要配置热点参数限流的高级选项了:

结合上一个配置,这里的含义是对0号的long类型参数限流,每1秒相同参数的QPS不能超过5,有两个例外:

•如果参数值是100,则每1秒允许的QPS为10

•如果参数值是101,则每1秒允许的QPS为15

2.3.案例

案例需求:给/order/{orderId}这个资源添加热点参数限流,规则如下:

•默认的热点参数规则是每1秒请求量不超过2

•给102这个参数设置例外:每1秒请求量不超过4

•给103这个参数设置例外:每1秒请求量不超过10

注意事项:热点参数限流对默认的SpringMVC资源无效,需要利用@SentinelResource注解标记资源

1)标记资源

给order-service中的OrderController中的/order/{orderId}资源添加注解:

2)热点参数限流规则

访问该接口,可以看到我们标记的hot资源出现了:

这里不要点击hot后面的按钮,页面有BUG

点击左侧菜单中热点规则菜单:

 

点击新增,填写表单:

3)Jmeter测试

选择《热点参数限流 QPS1》:

这里发起请求的QPS为5.

包含3个http请求:

普通参数,QPS阈值为2

运行结果:

 例外项,QPS阈值为4

运行结果:

 例外项,QPS阈值为10

运行结果:


http://www.ppmy.cn/news/1559019.html

相关文章

【Leetcode 每日一题】3159. 查询数组中元素的出现位置

问题背景 给你一个整数数组 n u m s nums nums,一个整数数组 q u e r i e s queries queries 和一个整数 x x x。 对于每个查询 q u e r i e s [ i ] queries[i] queries[i],你需要找到 n u m s nums nums 中第 q u e r i e s [ i ] queries[i] q…

Slater 条件与 KKT 条件

凸优化中的 Slater 条件与 KKT 条件详解 凸优化是数学优化中一类非常重要的问题,它在机器学习、信号处理、经济学等多个领域有广泛应用。本文将详细介绍凸优化中两个关键的理论工具:Slater 条件与Karush-Kuhn-Tucker (KKT) 条件。 一、凸优化问题的基本…

DP之背包基础

目录 DP简介 01背包问题 采药(01背包例题) 完全背包 疯狂的采药(完全背包例题) 背包变式 装箱问题 砝码称重 质数拆分 优化思考 DP简介 全称Dynamic Programming即动态规划 DP算法是解决多阶段决策过程最优化问题的一种常用方法。 多阶段决策过程是指这样一类特…

scala借阅图书保存记录(三)

BookDAO package org.app package daoimport models.BookModelimport scala.collection.mutable.ListBuffer//图书,数据操作 class BookDAO {//加载图书,从文件中读入def loadBooks(): ListBuffer[BookModel] {val books new ListBuffer[BookModel]()…

pycharm+anaconda创建项目

pycharmanaconda创建项目 安装: Windows下PythonPyCharm的安装步骤及PyCharm的使用-CSDN博客 详细Anaconda安装配置环境创建教程-CSDN博客 创建项目: 开始尝试新建一个项目吧! 选择好项目建设的文件夹 我的项目命名为:pyth…

QT-基础-1-Qt 中的字符串处理与常见数据类型

在 Qt 框架中,字符串处理是应用程序开发中不可或缺的一部分。Qt 提供了强大的 QString 类,以便于开发者处理文本数据,支持 Unicode 字符,并且拥有丰富的字符串操作方法。此外,Qt 还提供了其他相关类,如 QSt…

【微信小程序】微信小程序中的异步函数是如何实现同步功能的

在微信小程序中,虽然很多 API 都是异步的,但可以通过一些方法来实现类似同步的功能。以下是几种常见的方法: 1. 使用 async/await async/await 是 ES2017 引入的语法糖,它基于 Promise 来实现异步操作的同步化写法。 示例代码 …

第二十三章 C++ 继承

C 继承 面向对象程序设计中最重要的一个概念是继承。继承允许我们依据另一个类来定义一个类,这使得创建和维护一个应用程序变得更容易。这样做,也达到了重用代码功能和提高执行时间的效果。 当创建一个类时,您不需要重新编写新的数据成员和…