Pytorch | 利用GRA针对CIFAR10上的ResNet分类器进行对抗攻击

news/2024/12/28 18:33:40/

Pytorch | 利用GRA针对CIFAR10上的ResNet分类器进行对抗攻击

  • CIFAR数据集
  • GRA介绍
    • 算法流程
  • GRA代码实现
    • GRA算法实现
    • 攻击效果
  • 代码汇总
    • gra.py
    • train.py
    • advtest.py

之前已经针对CIFAR10训练了多种分类器:
Pytorch | 从零构建AlexNet对CIFAR10进行分类
Pytorch | 从零构建Vgg对CIFAR10进行分类
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
Pytorch | 从零构建ResNet对CIFAR10进行分类
Pytorch | 从零构建MobileNet对CIFAR10进行分类
Pytorch | 从零构建EfficientNet对CIFAR10进行分类
Pytorch | 从零构建ParNet对CIFAR10进行分类

也实现了一些攻击算法:
Pytorch | 利用FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用BIM/I-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用MI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用NI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用PI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用VMI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用VNI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用EMI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用AI-FGTM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用I-FGSSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用SMI-FGRM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用VA-I-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用PC-I-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用IE-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击

本篇文章我们使用Pytorch实现GRA对CIFAR10上的ResNet分类器进行攻击.

CIFAR数据集

CIFAR-10数据集是由加拿大高级研究所(CIFAR)收集整理的用于图像识别研究的常用数据集,基本信息如下:

  • 数据规模:该数据集包含60,000张彩色图像,分为10个不同的类别,每个类别有6,000张图像。通常将其中50,000张作为训练集,用于模型的训练;10,000张作为测试集,用于评估模型的性能。
  • 图像尺寸:所有图像的尺寸均为32×32像素,这相对较小的尺寸使得模型在处理该数据集时能够相对快速地进行训练和推理,但也增加了图像分类的难度。
  • 类别内容:涵盖了飞机(plane)、汽车(car)、鸟(bird)、猫(cat)、鹿(deer)、狗(dog)、青蛙(frog)、马(horse)、船(ship)、卡车(truck)这10个不同的类别,这些类别都是现实世界中常见的物体,具有一定的代表性。

下面是一些示例样本:
在这里插入图片描述

GRA介绍

GRA(Gradient Relevance Attack)是一种新型的基于梯度的攻击算法,旨在提高对抗样本的转移性,从而暴露深度神经网络(DNN)的安全缺陷。

算法流程

  1. 输入初始化
    • 输入源模型 F ψ F_{\psi} Fψ、损失函数 L L L、干净图像 c l e a n clean clean 及其真实标签 y t r u e y^{true} ytrue、最大对抗扰动幅度 ε \varepsilon ε、迭代次数 T T T、动量累积衰减因子 μ \mu μ、衰减因子 η \eta η、上界因子 β \beta β 和样本数量 m m m.
    • 初始化步长 α = ε / T \alpha=\varepsilon / T α=ε/T,动量累积 g 0 = 0 g_{0}=0 g0=0 v 0 = 0 v_{0}=0 v0=0,初始对抗样本 x 0 a d v = x x_{0}^{a d v}=x x0adv=x,并将初始衰减指标 M 0 M_{0} M0 的所有元素设置为 1 / η 1 / \eta 1/η
  2. 迭代更新
    • 计算梯度:对于 t = 0 t = 0 t=0 T − 1 T - 1 T1 的每次迭代,计算当前梯度 G t ( x ) = ∇ x t a d v L ( x t a d v , y t r u e ) G_{t}(x)=\nabla_{x_{t}^{a d v}} L\left(x_{t}^{a d v}, y^{t r u e}\right) Gt(x)=xtadvL(xtadv,ytrue) 和平均梯度 G t ‾ ( x ) = 1 m ∑ i = 1 m ∇ x t i L ( x t i , y t r u e ) \overline{G_{t}}(x)=\frac{1}{m} \sum_{i = 1}^{m} \nabla_{x_{t}^{i}} L\left(x_{t}^{i}, y^{true }\right) Gt(x)=m1i=1mxtiL(xti,ytrue),其中 x t i = x t a d v + γ t i x_{t}^{i}=x_{t}^{a d v}+\gamma_{t}^{i} xti=xtadv+γti γ t i \gamma_{t}^{i} γti 是满足 γ t i ∼ U [ − ( β ⋅ ε ) d , ( β ⋅ ε ) d ] \gamma_{t}^{i} \sim U[-(\beta \cdot \varepsilon)^{d},(\beta \cdot \varepsilon)^{d}] γtiU[(βε)d,(βε)d]的随机噪声。
    • 计算余弦相似度和全局加权梯度:计算余弦相似度 s t = G t ( x ) ⋅ G t ‾ ( x ) ∥ G t ( x ) ∥ 2 ⋅ ∥ G t ‾ ( x ) ∥ 2 s_{t}=\frac{G_{t}(x) \cdot \overline{G_{t}}(x)}{\left\|G_{t}(x)\right\|_{2} \cdot\left\|\overline{G_{t}}(x)\right\|_{2}} st=Gt(x)2Gt(x)2Gt(x)Gt(x),并得到全局加权梯度 W G t = s t ⋅ G t + ( 1 − s t ) ⋅ G t ‾ W G_{t}=s_{t} \cdot G_{t}+\left(1 - s_{t}\right) \cdot \overline{G_{t}} WGt=stGt+(1st)Gt
    • 更新动量累积 g t + 1 = μ ⋅ g t + W G t ∥ W G t ∥ 1 g_{t + 1}=\mu \cdot g_{t}+\frac{W G_{t}}{\left\|W G_{t}\right\|_{1}} gt+1=μgt+WGt1WGt
    • 更新衰减指标:根据动量累积的符号变化更新衰减指标 M t + 1 = M t ⊙ ( M t + 1 e + η ⋅ M t + 1 d ) M_{t + 1}=M_{t} \odot\left(M_{t + 1}^{e}+\eta \cdot M_{t + 1}^{d}\right) Mt+1=Mt(Mt+1e+ηMt+1d),其中 M t + 1 e M_{t + 1}^{e} Mt+1e M t + 1 d M_{t + 1}^{d} Mt+1d 分别表示相邻两次迭代中对抗扰动不变和变化的位置。
    • 更新对抗样本 x t + 1 a d v = C l i p { x t a d v + α ⋅ M t + 1 ⊙ s i g n ( g t + 1 ) } x_{t + 1}^{a d v}=Clip\left\{x_{t}^{a d v}+\alpha \cdot M_{t + 1} \odot sign\left(g_{t + 1}\right)\right\} xt+1adv=Clip{xtadv+αMt+1sign(gt+1)},其中 C l i p Clip Clip 用于将图像像素限制在给定约束范围内。
  3. 输出结果:迭代完成后,输出最终的对抗样本 x T a d v x_{T}^{a d v} xTadv.

更新衰减指标部分的详细计算过程如下:

  1. 初始化衰减指标
    • 首先,在算法开始时,将衰减指标 M 0 M_{0} M0 的所有元素初始化为 1 / η 1 / \eta 1/η,其中 η \eta η 是预先设定的衰减因子,其值在 ( 0 , 1 ) (0, 1) (0,1) 之间。这一步为后续的更新提供了初始状态。
  2. 计算动量累积的符号变化
    • 在每次迭代中,计算当前动量累积 g t + 1 g_{t + 1} gt+1 与上一次动量累积 g t g_{t} gt 在每个元素位置上的符号变化情况。具体来说,对于 g t + 1 g_{t +1} gt+1 g t g_{t} gt 的第 j j j 个元素( j j j 表示元素在张量中的位置索引),定义 M t + 1 , j e M_{t + 1, j}^{e} Mt+1,je(表示相邻两次迭代中对抗扰动不变的位置)和 M t + 1 , k d M_{t + 1, k}^{d} Mt+1,kd(表示相邻两次迭代中对抗扰动变化的位置)如下:
    • M t + 1 , j e = { 1 , if  sign ⁡ ( g t j ) = sign ⁡ ( g t + 1 j ) 0 , otherwise  M_{t + 1, j}^{e}=\begin{cases}1, & \text { if } \operatorname{sign}\left(g_{t}^{j}\right)=\operatorname{sign}\left(g_{t+ 1}^{j}\right) \\ 0, & \text { otherwise }\end{cases} Mt+1,je={1,0, if sign(gtj)=sign(gt+1j) otherwise 
    • M t + 1 , k d = { 1 , if  sign ⁡ ( g t k ) ≠ sign ⁡ ( g t + 1 k ) 0 , otherwise  M_{t + 1, k}^{d}=\begin{cases}1, & \text { if } \operatorname{sign}\left(g_{t}^{k}\right) \neq\operatorname{sign}\left(g_{t + 1}^{k}\right) \\ 0, & \text {otherwise }\end{cases} Mt+1,kd={1,0, if sign(gtk)=sign(gt+1k)otherwise 
    • 这里 sign ⁡ \operatorname{sign} sign 函数用于获取元素的符号( 1 1 1 表示正数, − 1 -1 1 表示负数, 0 0 0 表示 0 0 0)。通过比较相邻两次迭代中动量累积元素的符号,确定哪些位置的对抗扰动发生了变化,哪些位置没有变化。
  3. 更新衰减指标
    • 根据上述计算得到的 M t + 1 e M_{t + 1}^{e} Mt+1e M t + 1 d M_{t + 1}^{d} Mt+1d,更新衰减指标 M t + 1 M_{t + 1} Mt+1。具体计算公式为 M t + 1 = M t ⊙ ( M t + 1 e + η ⋅ M t + 1 d ) M_{t + 1}=M_{t} \odot\left(M_{t + 1}^{e}+\eta \cdot M_{t + 1}^{d}\right) Mt+1=Mt(Mt+1e+ηMt+1d),其中 ⊙ \odot 表示元素级的乘法运算。
    • 当某一位置的对抗扰动没有发生符号变化(即 M t + 1 , j e = 1 M_{t + 1, j}^{e}=1 Mt+1,je=1 M t + 1 , j d = 0 M_{t + 1, j}^{d}=0 Mt+1,jd=0)时, M t + 1 M_{t + 1} Mt+1 在该位置的值保持不变(因为 M t + 1 e + η ⋅ M t + 1 d = 1 M_{t + 1}^{e}+\eta \cdot M_{t+ 1}^{d}=1 Mt+1e+ηMt+1d=1),即保持之前的衰减状态。
    • 当某一位置的对抗扰动发生了符号变化(即 M t + 1 , k e = 0 M_{t + 1, k}^{e}=0 Mt+1,ke=0 M t + 1 , k d = 1 M_{t + 1, k}^{d}=1 Mt+1,kd=1)时, M t + 1 M_{t + 1} Mt+1 在该位置的值会根据 η \eta η 进行衰减(因为 M t + 1 e + η ⋅ M t + 1 d = η M_{t + 1}^{e}+\eta \cdot M_{t +1}^{d}=\eta Mt+1e+ηMt+1d=η ),从而减小该位置在后续对抗样本更新中的步长影响。这样,当对抗扰动的符号频繁变化时,通过衰减指标逐渐减小步长,使对抗样本的更新能够更接近最优解,避免因固定步长而在最优解附近振荡。

GRA代码实现

GRA算法实现

python">import torch
import torch.nn as nndef GRA(model, criterion, original_images, labels, epsilon, num_iterations=10, decay=1, beta=3.5, eta=0.94, sample_num=20):"""GRA (Gradient Relevance Attack)参数:- model: 要攻击的模型- criterion: 损失函数- original_images: 原始图像- labels: 原始图像的标签- epsilon: 最大扰动幅度- num_iterations: 迭代次数- decay: 动量衰减因子- beta: 样本范围上限因子- eta: 衰减因子- sample_num: 样本数量"""alpha = epsilon / num_iterationsperturbed_images = original_images.clone().detach().requires_grad_(True)momentum = torch.zeros_like(original_images).detach().to(original_images.device)# 初始化衰减指标M为1/etaM = torch.ones_like(original_images).detach().to(original_images.device) / etafor _ in range(num_iterations):# 计算当前输入的梯度current_grad = compute_gradient(model, criterion, perturbed_images, labels)# 采样附近图像并计算平均梯度sampled_gradients = []x_i = perturbed_images.clone()for _ in range(sample_num):xi = x_i + torch.randn_like(x_i) * (beta * epsilon)sampled_gradients.append(compute_gradient(model, criterion, xi, labels))x_i = xi# 计算采样平均梯度average_grad = torch.mean(torch.stack(sampled_gradients), dim=0)# 计算余弦相似度cosine_similarity = torch.sum(current_grad * average_grad, dim=(1, 2, 3), keepdim=True) / (torch.norm(current_grad, p=2, dim=(1, 2, 3), keepdim=True) * torch.norm(average_grad, p=2, dim=(1, 2, 3), keepdim=True))# 计算全局加权梯度weighted_grad = cosine_similarity * current_grad + (1 - cosine_similarity) * average_grad# 更新动量积累old_momentum = momentum.clone().detach()momentum = decay * momentum + weighted_grad / torch.sum(torch.abs(weighted_grad), dim=(1, 2, 3), keepdim=True)# 更新衰减指标Msign_data_grad = momentum.sign()M = M * ((sign_data_grad == torch.sign(old_momentum)) + eta * (sign_data_grad!= torch.sign(old_momentum)))# 更新对抗样本perturbed_images = perturbed_images + alpha * M * sign_data_gradperturbed_images = torch.clamp(perturbed_images, original_images - epsilon, original_images + epsilon)perturbed_images = perturbed_images.detach().requires_grad_(True)return perturbed_imagesdef compute_gradient(model, criterion, x, labels):"""计算梯度参数:- model: 模型- criterion: 损失函数- x: 输入图像- labels: 标签"""x = x.clone().detach().requires_grad_(True)outputs = model(x)loss = criterion(outputs, labels)model.zero_grad()loss.backward()return x.grad.data

攻击效果

由于 sample_num=20 计算时间,这里取 sample_num=1.
在这里插入图片描述

代码汇总

gra.py

python">import torch
import torch.nn as nndef GRA(model, criterion, original_images, labels, epsilon, num_iterations=10, decay=1, beta=3.5, eta=0.94, sample_num=20):"""GRA (Gradient Relevance Attack)参数:- model: 要攻击的模型- criterion: 损失函数- original_images: 原始图像- labels: 原始图像的标签- epsilon: 最大扰动幅度- num_iterations: 迭代次数- decay: 动量衰减因子- beta: 样本范围上限因子- eta: 衰减因子- sample_num: 样本数量"""alpha = epsilon / num_iterationsperturbed_images = original_images.clone().detach().requires_grad_(True)momentum = torch.zeros_like(original_images).detach().to(original_images.device)# 初始化衰减指标M为1/etaM = torch.ones_like(original_images).detach().to(original_images.device) / etafor _ in range(num_iterations):# 计算当前输入的梯度current_grad = compute_gradient(model, criterion, perturbed_images, labels)# 采样附近图像并计算平均梯度sampled_gradients = []x_i = perturbed_images.clone()for _ in range(sample_num):xi = x_i + torch.randn_like(x_i) * (beta * epsilon)sampled_gradients.append(compute_gradient(model, criterion, xi, labels))x_i = xi# 计算采样平均梯度average_grad = torch.mean(torch.stack(sampled_gradients), dim=0)# 计算余弦相似度cosine_similarity = torch.sum(current_grad * average_grad, dim=(1, 2, 3), keepdim=True) / (torch.norm(current_grad, p=2, dim=(1, 2, 3), keepdim=True) * torch.norm(average_grad, p=2, dim=(1, 2, 3), keepdim=True))# 计算全局加权梯度weighted_grad = cosine_similarity * current_grad + (1 - cosine_similarity) * average_grad# 更新动量积累old_momentum = momentum.clone().detach()momentum = decay * momentum + weighted_grad / torch.sum(torch.abs(weighted_grad), dim=(1, 2, 3), keepdim=True)# 更新衰减指标Msign_data_grad = momentum.sign()M = M * ((sign_data_grad == torch.sign(old_momentum)) + eta * (sign_data_grad!= torch.sign(old_momentum)))# 更新对抗样本perturbed_images = perturbed_images + alpha * M * sign_data_gradperturbed_images = torch.clamp(perturbed_images, original_images - epsilon, original_images + epsilon)perturbed_images = perturbed_images.detach().requires_grad_(True)return perturbed_imagesdef compute_gradient(model, criterion, x, labels):"""计算梯度参数:- model: 模型- criterion: 损失函数- x: 输入图像- labels: 标签"""x = x.clone().detach().requires_grad_(True)outputs = model(x)loss = criterion(outputs, labels)model.zero_grad()loss.backward()return x.grad.data

train.py

python">import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from models import ResNet18# 数据预处理
transform_train = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])transform_test = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 加载Cifar10训练集和测试集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=False, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)# 定义设备(GPU或CPU)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")# 初始化模型
model = ResNet18(num_classes=10)
model.to(device)# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)if __name__ == "__main__":# 训练模型for epoch in range(10):  # 可以根据实际情况调整训练轮数running_loss = 0.0for i, data in enumerate(trainloader, 0):inputs, labels = data[0].to(device), data[1].to(device)optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()if i % 100 == 99:print(f'Epoch {epoch + 1}, Batch {i + 1}: Loss = {running_loss / 100}')running_loss = 0.0torch.save(model.state_dict(), f'weights/epoch_{epoch + 1}.pth')print('Finished Training')

advtest.py

python">import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from models import *
from attacks import *
import ssl
import os
from PIL import Image
import matplotlib.pyplot as pltssl._create_default_https_context = ssl._create_unverified_context# 定义数据预处理操作
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.491, 0.482, 0.446), (0.247, 0.243, 0.261))])# 加载CIFAR10测试集
testset = torchvision.datasets.CIFAR10(root='./data', train=False,download=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=128,shuffle=False, num_workers=2)# 定义设备(GPU优先,若可用)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")model = ResNet18(num_classes=10).to(device)criterion = nn.CrossEntropyLoss()# 加载模型权重
weights_path = "weights/epoch_10.pth"
model.load_state_dict(torch.load(weights_path, map_location=device))if __name__ == "__main__":# 在测试集上进行FGSM攻击并评估准确率model.eval()  # 设置为评估模式correct = 0total = 0epsilon = 16 / 255  # 可以调整扰动强度for data in testloader:original_images, labels = data[0].to(device), data[1].to(device)original_images.requires_grad = Trueattack_name = 'GRA'if attack_name == 'FGSM':perturbed_images = FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'BIM':perturbed_images = BIM(model, criterion, original_images, labels, epsilon)elif attack_name == 'MI-FGSM':perturbed_images = MI_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'NI-FGSM':perturbed_images = NI_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'PI-FGSM':perturbed_images = PI_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'VMI-FGSM':perturbed_images = VMI_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'VNI-FGSM':perturbed_images = VNI_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'EMI-FGSM':perturbed_images = EMI_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'AI-FGTM':perturbed_images = AI_FGTM(model, criterion, original_images, labels, epsilon)elif attack_name == 'I-FGSSM':perturbed_images = I_FGSSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'SMI-FGRM':perturbed_images = SMI_FGRM(model, criterion, original_images, labels, epsilon)elif attack_name == 'VA-I-FGSM':perturbed_images = VA_I_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'PC-I-FGSM':perturbed_images = PC_I_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'IE-FGSM':perturbed_images = IE_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'GRA':perturbed_images = GRA(model, criterion, original_images, labels, epsilon)perturbed_outputs = model(perturbed_images)_, predicted = torch.max(perturbed_outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()accuracy = 100 * correct / total# Attack Success RateASR = 100 - accuracyprint(f'Load ResNet Model Weight from {weights_path}')print(f'epsilon: {epsilon:.4f}')print(f'ASR of {attack_name} : {ASR :.2f}%')

http://www.ppmy.cn/news/1558853.html

相关文章

大模型训练框架Megatron原理

这篇文章是关于NVIDIA Megatron框架的深入分析,该框架用于训练超大的Transformer语言模型。 摘要 Megatron:基于PyTorch的分布式训练框架,用于训练超大的Transformer语言模型。 目标:通过综合应用数据并行、Tensor并行和Pipelin…

网络安全攻防学习平台 - 基础关

基本方法(本次用到) 开发者工具:一般浏览器都自带开发者工具(快捷键为F12),点击后,可以查看当前网页的源代码,智能一点的浏览器,将鼠标移到指定的代码上,就会…

获取程序启动类

当程序有多个启动入口时,需要根据不同的启动类来决定方法是否执行,此时就需要获取启动类。 首先根据系统参数 sun.java.command 来获取启动类,如果以jar包方式启动,则获取到的就是jar包名称,此时需要从线程栈中获取mai…

Linux网络——UDP的运用

Linux网络——UDP的运用 文章目录 Linux网络——UDP的运用一、引入二、服务端实现2.1 创建socket套接字2.2 指定网络接口并bind2.3 接收数据并处理2.4 整体代码2.5 IP的绑定的细节 三、用户端实现3.1 创建套接字3.2 指定网络接口3.3 发生数据并接收3.4 绑定问题 四、代码五、UD…

ByConity BSP 解锁数据仓库新未来

文章目录 前言BSP 模式简介基于 TPC-DS 的 ELT 活动测试环境登录 ECS数据查询配置 执行 02.sqlsql解释:1. 第一步:创建 wscs 临时表2. 第二步:创建 wswscs 临时表3. 第三步:对比 2001 年和 2002 年的数据子查询 1:提取…

【ETCD】【实操篇(十七)】 etcd 集群定期维护指南

目录 概述Raft 日志保留键空间历史压缩:v3 API 键值数据库碎片整理空间配额快照备份 概述 为了保持 etcd 集群的可靠性,需要定期进行维护。根据 etcd 应用程序的需求,这些维护通常可以自动化进行,并且不会导致停机或性能显著下降…

深度学习-论文即插即用模块1

[深度学习] 即插即用模块详解与实践 深度学习近年来已经成为人工智能的核心驱动力,各种模型和技术被广泛应用于图像处理、自然语言处理、语音识别等领域。然而,构建深度学习模型的过程通常复杂且耗时。为了提高开发效率并降低技术门槛,“即插…

SpringCloudAlibaba实战入门之路由网关Gateway断言(十二)

上一节课中我们初步讲解了网关的基本概念、基本功能,并且带大家实战体验了一下网关的初步效果,这节课我们继续学习关于网关的一些更高级有用功能,比如本篇文章的断言。 一、网关主要组成部分 上图中是核心的流程图,最主要的就是Route、Predicates 和 Filters 作用于特定路…