数据分析实战—鸢尾花数据分类

news/2024/12/21 21:43:39/

1.实战内容

(1) 加载鸢尾花数据集(iris.txt)并存到iris_df中,使用seaborn.lmplot寻找class(种类)项中的异常值,其他异常值也同时处理 。

python">import pandas as pd
from sklearn.datasets import load_iris
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
iris=load_iris()
iris_df = pd.DataFrame(iris['data'], columns=iris['feature_names'])
iris_df['target']=iris['target']
python">import pandas as pd
import matplotlib.pyplot as plt
iris_df=pd.read_csv('iris.txt',sep=',')
iris_df

python">import seaborn as snsimport warnings
warnings.filterwarnings("ignore")sns.lmplot(x='sepal_length',y='sepal_width',col='class',data=iris_df)
sns.lmplot(x='petal_length',y='petal_width',col='class',data=iris_df)
iris_df['class'].drop_duplicates()#通过上面的语句,发现class中有异常值,同时发现sepal_width和sepal_length有异常值

python">#class应为3类,将versicolor修改为Iris-versicolor,将iris-setossa修改为Iris-setosa
iris_df.loc[iris_df['class']=='versicolor','class']='Iris-versicolor'
iris_df.loc[iris_df['class']=='Iris-setossa','class']='Iris-setosa'
sns.lmplot(x='sepal_length',y='sepal_width',col='class',data=iris_df)#重画,检验是否是3类

python">#通过直方图观察数据分布
iris_df.loc[iris_df['class']=='Iris-setosa','sepal_width'].hist()

python"># 将Iris-setosa的sepal_width小于2.5cm删除
iris_df=iris_df.loc[(iris_df['class']!='Iris-setosa')|(iris_df['sepal_width']>=2.5)]
iris_df.loc[iris_df['class']=='Iris-setosa','sepal_width'].hist()

python">#列出异常值
iris_df.loc[(iris_df['class']=='Iris-versicolor')&(iris_df['sepal_length']<1.0)]

python"># 将Iris-versicolor的sepal_length接近于0的异常值乘100,‘米’转化成‘厘米’
iris_df.loc[(iris_df['class']=='Iris-versicolor')&(iris_df['sepal_length']<1.0),'sepal_length']*= 100
iris_df.loc[iris_df['class']=='Iris-versicolor','sepal_length'].hist()

(2) 使用isnull和describe查看缺失值,并处理 

python"># 列出缺失的样本
iris_df.isnull().sum()

python">iris_df.describe()

python">iris_df.loc[iris_df['petal_width'].isnull()]

python">#用该类的平均值来填补缺失值,并列出修改过样本
avg_value=iris_df.loc[iris_df['class']=='Iris-setosa','petal_width'].mean()
iris_df.loc[(iris_df['class']=='Iris-setosa')&(iris_df['petal_width'].isnull()), 'petal_width'] = avg_value
iris_df.loc[(iris_df['class']=='Iris-setosa')&(iris_df['petal_width']==avg_value)]

python">#检查是否还存在缺失值
iris_df.isnull().sum()

python">#将标签名称转化成标签(如:Iris-setosa变成0)
class_mapping={'Iris-setosa':0,'Iris-versicolor':1,'Iris-virginica':2}
iris_df['class']=iris_df['class'].map(class_mapping)
iris_df

python">#保存数据
iris_df.to_csv('iris-clean.csv',index=False)

(3) 导入sklearn自带的数据集load_iris,获取特征矩阵和目标数组(标签)

python">from sklearn.datasets import load_iris
iris=load_iris()
iris_X=iris.data
iris_Y=iris.target

(4) 使用KNeighborsClassifier()分类预测 

python">from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split,cross_val_score
def knn_function(X,Y):X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.3)clf=KNeighborsClassifier()#建立模型clf.fit(X_train,Y_train)#训练模型predict_test=clf.predict(X_test)print('预测的值','\n',predict_test)print('真实的值','\n',Y_test)score=clf.score(X_test,Y_test,sample_weight=None)#计算准确率print('准确率','\n',score)return clf
knn_function(iris_X,iris_Y)

(5) 导入iris_clean.csv,获取特征矩阵和目标数组,调用函数knn_function(),保存模型 

python">import pandas as pd
import pickle
import seaborn as sns
import matplotlib.pyplot as plt
iris= pd.read_csv('iris-clean.csv')
#获取特征矩阵和目标数组(标签)
iris_XX = iris.loc[0:,'sepal_length':'petal_width'].values
iris_YY = iris['class'].values
#调用函数
knn_model = knn_function(iris_XX,iris_YY)
# 保存模型
with open('knn_model.pkl', 'wb') as f:pickle.dump(knn_model, f)
# 读取保存模型
with open('knn_model.pkl', 'rb') as f:model = pickle.load(f)
#模型的表现与训练集的选择关系
model_accuracies = []
for repetition in range(1000):X_train, X_test, Y_train, Y_test = \train_test_split(iris_XX, iris_YY, test_size=0.3)
# 通过读取保存模型knn_model.pkl代码,建立模型modelscore = model.score(X_test, Y_test, sample_weight=None)model_accuracies.append(score)
sns.distplot(model_accuracies)
plt.show()

 

(6) 超参数与调整,以sklearn自带的鸢尾花数据为例,选择KNN模型,调整超参数K的值,用10折交叉验证判断K值为1~25时的最优值 

python">from sklearn.model_selection import train_test_split, cross_val_score
from sklearn import datasets
from sklearn.neighbors import KNeighborsClassifier
import matplotlib.pyplot as pltiris = datasets.load_iris()
X = iris.data
Y = iris.target
# 划分训练集和测试集,测试集占总数据的33%,随机数生成器种子为10
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.33,random_state=10)
k_range = range(1, 26)
cv_scores = []
for n in k_range:clf = KNeighborsClassifier(n)scores = cross_val_score(clf, X_train, Y_train, cv=10,scoring='accuracy') cv_scores.append(scores.mean())
plt.plot(k_range, cv_scores)
plt.xlabel('K')
plt.ylabel('Accuracy')
plt.show()#选择最优的k
best_clf = KNeighborsClassifier(n_neighbors=5)
best_clf.fit(X_train, Y_train)
print('参数',best_clf.get_params())
print('准确率',best_clf.score(X_test, Y_test))
print('预测的值',best_clf.predict(X_test))

2.数据集下载

https://gitee.com/qxh200000/c_-code/commit/1af2468e6b7f1bd8cd3b890018031c6fa6dff9bd


http://www.ppmy.cn/news/1557021.html

相关文章

【故障处理系列--gitlab的CI流水线下载安装包提示报错】

故障现象&#xff1a; 前端同事一直向我反映使用alpine-node系列的镜像&#xff0c;安装包报错故障原因 在CI文件上配置的代理没有生效&#xff0c;导致流水线无法在gitlab-runner上拉取https://registry.npmmirror.com仓库软件包 后来查资料提示说&#xff0c;在gitlab的CI文…

SQL 外联结与全联结的使用详解

在数据库查询中&#xff0c;联结操作是用于从多个表中获取相关数据的关键技术。SQL 提供了多种类型的联结&#xff08;Join&#xff09;方式&#xff0c;其中外联结&#xff08;Outer Join&#xff09;和全联结&#xff08;Full Outer Join&#xff09;是常用的两种类型。它们不…

android opencv导入进行编译

1、直接新建module进行导入&#xff0c;选择opencv的sdk 导入module模式&#xff0c;选择下载好的sdk&#xff0c;修改module name为OpenCV490。 有报错直接解决报错&#xff0c;没报错直接运行成功。 2、解决错误&#xff0c;同步成功 一般报错是gradle版本问题较多。我的报…

信息安全管理与评估赛项任务书(模块二)

全国职业院校技能大赛 高等职业教育组 信息安全管理与评估 任务书 模块二 网络安全事件响应、数字取证调查、应用程序安全 一、比赛时间及注意事项 本阶段比赛时长为180分钟,时间为13:30-16:30。 【注意事项】 (1) 比赛结束,不得关机; (2) 选手首先需要在U盘的根目…

uni-app商品搜索页面

目录 一:功能概述 二:功能实现 一:功能概述 商品搜索页面,可以根据商品品牌,商品分类,商品价格等信息实现商品搜索和列表展示。 二:功能实现 1:商品搜索数据 <view class="search-map padding-main bg-base"> <view class…

Vscode搭建C语言多文件开发环境

一、文章内容简介 本文介绍了 “Vscode搭建C语言多文件开发环境”需要用到的软件&#xff0c;以及vscode必备插件&#xff0c;最后多文件编译时tasks.json文件和launch.json文件的配置。即目录顺序。由于内容较多&#xff0c;建议大家在阅读时使用电脑阅读&#xff0c;按照目录…

联合目标检测与图像分类提升数据不平衡场景下的准确率

联合目标检测与图像分类提升数据不平衡场景下的准确率 在一些数据不平衡的场景下&#xff0c;使用单一的目标检测模型很难达到99%的准确率。为了优化这一问题&#xff0c;适当将其拆解为目标检测模型和图像分类模型的组合&#xff0c;可以更有效地控制最终效果&#xff0c;尤其…

Python面试常见问题及答案10

1. 问题&#xff1a;如何在Python中对列表进行排序&#xff1f; 答案&#xff1a; 可以使用列表的sort()方法&#xff0c;它会直接修改原始列表。例如&#xff1a; my_list [3, 1, 4, 1, 5, 9, 2, 6, 5, 3] my_list.sort() print(my_list)也可以使用sorted()函数&#xff0c…