第三十八天|动态规划|背包问题总结,322. 零钱兑换,279.完全平方数,139.单词拆分,多重背包

news/2024/12/16 9:52:49/

目录

322. 零钱兑换

279.完全平方数

先遍历物品, 再遍历背包(好理解一点)

先遍历背包, 再遍历物品

139.单词拆分

方法1:完全背包

方法2:完全背包2

方法3:回溯法+记忆化

多重背包

背包问题总结

背包递推公式

遍历顺序

01背包

完全背包

​编辑


记得看本篇的背包问题总结!

今天的三道题都很妙,自己写不出来,但是细看又能看懂。有机会再来复盘一下。尤其是139。

322. 零钱兑换

题目中说每种硬币的数量是无限的,可以看出是典型的完全背包问题。

  • 确定dp数组以及下标的含义

dp[j]:凑足总额为j所需钱币的最少个数为dp[j]

  • 确定递推公式

凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j](考虑coins[i])

所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。

递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);

  • dp数组如何初始化

首先凑足总金额为0所需钱币的个数一定是0,那么dp[0] = 0;

其他下标对应的数值呢?

考虑到递推公式的特性,dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖。

所以下标非0的元素都是应该是最大值。

  • 确定遍历顺序

本题并不强调集合是组合还是排列。

所以本题的两个for循环的关系是:外层for循环遍历物品,内层for遍历背包或者外层for遍历背包,内层for循环遍历物品都是可以的!

那么我采用coins放在外循环,target在内循环的方式。

本题钱币数量可以无限使用,那么是完全背包。所以遍历的内循环是正序

综上所述,遍历顺序为:coins(物品)放在外循环,target(背包)在内循环。且内循环正序。

java">    class Solution {public int coinChange(int[] coins, int amount) {int max = Integer.MAX_VALUE;int[] dp = new int[amount + 1];//初始化dp数组为最大值for (int i = 0; i < dp.length; i++) {dp[i] = max;}//当金额为0时需要的硬币数目为0dp[0] = 0;for (int i = 0; i < coins.length; i++) {//正序遍历:完全背包每个硬币可以选择多次for (int j = coins[i]; j <= amount; j++) {//只有dp[j-coins[i]]不是初始最大值时,该位才有选择的必要if (dp[j - coins[i]] != max) {//选择硬币数目最小的情况dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1);}}}return dp[amount] == max ? -1 : dp[amount];}}
  • 时间复杂度: O(n * amount),其中 n 为 coins 的长度
  • 空间复杂度: O(amount)

279.完全平方数

把题目翻译一下:完全平方数就是物品(可以无限件使用),凑个正整数n就是背包,问凑满这个背包最少有多少物品?

  • 确定dp数组以及下标的含义

dp[j]:和为j的完全平方数的最少数量为dp[j]

  • 确定递推公式

dp[j] 可以由dp[j - i * i]推出, dp[j - i * i] + 1 便可以凑成dp[j]。

此时我们要选择最小的dp[j],所以递推公式:dp[j] = min(dp[j - i * i] + 1, dp[j]);

  • dp数组如何初始化

dp[0]=0

非0下标的dp[j]一定要初始为最大值,这样dp[j]在递推的时候才不会被初始值覆盖。

  • 确定遍历顺序

遍历顺序无所谓。

先遍历物品, 再遍历背包(好理解一点)

java"> class Solution {public int numSquares(int n) {// 版本一,先遍历物品, 再遍历背包int max = Integer.MAX_VALUE;int[] dp = new int[n + 1];// 初始化for (int i = 1; i <= n; i++) {dp[i] = max;}dp[0] = 0;// 遍历物品for (int i = 1; i * i <= n; i++) {// 遍历背包for (int j = i * i; j <= n; j++) {//不需要這個if statement,因爲在完全平方數這一題不會有"湊不成"的狀況發生( 一定可以用"1"來組成任何一個n),故comment掉這個if statement。//if (dp[j - i * i] != max) {dp[j] = Math.min(dp[j], dp[j - i * i] + 1);//}}}return dp[n];}}

先遍历背包, 再遍历物品

java">    class Solution {public int numSquares(int n) {// 版本二, 先遍历背包, 再遍历物品int max = Integer.MAX_VALUE;int[] dp = new int[n + 1];for (int i = 1; i <= n; i++) {dp[i] = max;}dp[0] = 0;// 遍历背包for (int j = 1; j <= n; j++) {// 遍历物品for (int i = 1; i * i <= j; i++) {dp[j] = Math.min(dp[j], dp[j - i * i] + 1);}}return dp[n];}}
  • 时间复杂度: O(n * √n)
  • 空间复杂度: O(n)

139.单词拆分

单词就是物品,字符串s就是背包,单词能否组成字符串s,就是问物品能不能把背包装满。

拆分时可以重复使用字典中的单词,说明就是一个完全背包!

  • 确定dp数组以及下标的含义

dp[i] : 字符串长度为i的话,dp[i]为true,表示可以拆分为一个或多个在字典中出现的单词

  • 确定递推公式

如果确定dp[j] 是true,且 [j, i] 这个区间的子串出现在字典里,那么dp[i]一定是true。(j < i )。

所以递推公式是 if([j, i] 这个区间的子串出现在字典里 && dp[j]是true) 那么 dp[i] = true

  • dp数组如何初始化

dp[0]一定要为true,否则递推下去后面都是false了。

dp[0]表示如果字符串为空的话,说明出现在字典里。

但题目中说了“给定一个非空字符串 s” 所以测试数据中不会出现i为0的情况,那么dp[0]初始为true完全就是为了推导公式。

下标非0的dp[i]初始化为false,只要没有被覆盖说明都是不可拆分为一个或多个在字典中出现的单词。

  • 确定遍历顺序

本题其实我们求的是排列数,为什么呢。 拿 s = "applepenapple", wordDict = ["apple", "pen"] 举例。

"apple", "pen" 是物品,那么我们要求 物品的组合一定是 "apple" + "pen" + "apple" 才能组成 "applepenapple"。

"apple" + "apple" + "pen" 或者 "pen" + "apple" + "apple" 是不可以的,那么我们就是强调物品之间顺序。

所以说,本题一定是 先遍历 背包,再遍历物品。


注意!这里的遍历顺序不能是先遍历物品,再遍历背包。

使用用例:s = "applepenapple", wordDict = ["apple", "pen"]

最后dp[s.size()] = 0 即 dp[13] = 0 ,而不是1,因为先用 "apple" 去遍历的时候,dp[8]并没有被赋值为1 (还没用"pen"),所以 dp[13]也不能变成1。

除非是先用 "apple" 遍历一遍,再用 "pen" 遍历,此时 dp[8]已经是1,最后再用 "apple" 去遍历,dp[13]才能是1。


  • 时间复杂度:O(n^3),因为substr返回子串的副本是O(n)的复杂度(这里的n是substring的长度)
  • 空间复杂度:O(n)

方法1:完全背包

java">class Solution {public boolean wordBreak(String s, List<String> wordDict) {HashSet<String> set = new HashSet<>(wordDict);boolean[] valid = new boolean[s.length() + 1];valid[0] = true;for (int i = 1; i <= s.length(); i++) {for (int j = 0; j < i && !valid[i]; j++) {if (set.contains(s.substring(j, i)) && valid[j]) {valid[i] = true;}}}return valid[s.length()];}
}

方法2:完全背包2

java">class Solution {public boolean wordBreak(String s, List<String> wordDict) {boolean[] dp = new boolean[s.length() + 1];dp[0] = true;for (int i = 1; i <= s.length(); i++) {for (String word : wordDict) {int len = word.length();if (i >= len && dp[i - len] && word.equals(s.substring(i - len, i))) {dp[i] = true;break;}}}return dp[s.length()];}
}

方法3:回溯法+记忆化

java">class Solution {private Set<String> set;private int[] memo;public boolean wordBreak(String s, List<String> wordDict) {memo = new int[s.length()];set = new HashSet<>(wordDict);return backtracking(s, 0);}public boolean backtracking(String s, int startIndex) {// System.out.println(startIndex);if (startIndex == s.length()) {return true;}if (memo[startIndex] == -1) {return false;}for (int i = startIndex; i < s.length(); i++) {String sub = s.substring(startIndex, i + 1);// 拆分出来的单词无法匹配if (!set.contains(sub)) {continue;                }boolean res = backtracking(s, i + 1);if (res) return true;}// 这里是关键,找遍了startIndex~s.length()也没能完全匹配,标记从startIndex开始不能找到memo[startIndex] = -1;return false;}
}

多重背包

多重背包:有N种物品和一个容量为V 的背包。第i种物品最多有Mi件可用,每件耗费的空间是Ci ,价值是Wi 。求解将哪些物品装入背包可使这些物品的耗费的空间 总和不超过背包容量,且价值总和最大。

多重背包和01背包是非常像的, 为什么和01背包像呢?

每件物品最多有Mi件可用,把Mi件摊开,其实就是一个01背包问题了。

例如:

背包最大重量为10。

物品为:

重量价值数量
物品01152
物品13203
物品24302

问背包能背的物品最大价值是多少?

和如下情况有区别么?

重量价值数量
物品01151
物品01151
物品13201
物品13201
物品13201
物品24301
物品24301

毫无区别,这就转成了一个01背包问题了,且每个物品只用一次。

java">import java.util.Scanner;
class multi_pack{public static void main(String [] args) {Scanner sc = new Scanner(System.in);/*** bagWeight:背包容量* n:物品种类*/int bagWeight, n;//获取用户输入数据,中间用空格隔开,回车键换行bagWeight = sc.nextInt();n = sc.nextInt();int[] weight = new int[n];int[] value = new int[n];int[] nums = new int[n];for (int i = 0; i < n; i++) weight[i] = sc.nextInt();for (int i = 0; i < n; i++) value[i] = sc.nextInt();for (int i = 0; i < n; i++) nums[i] = sc.nextInt();int[] dp = new int[bagWeight + 1];//先遍历物品再遍历背包,作为01背包处理for (int i = 0; i < n; i++) {for (int j = bagWeight; j >= weight[i]; j--) {//遍历每种物品的个数for (int k = 1; k <= nums[i] && (j - k * weight[i]) >= 0; k++) {dp[j] = Math.max(dp[j], dp[j - k * weight[i]] + k * value[i]);}}}System.out.println(dp[bagWeight]);}
}

背包问题总结

背包递推公式

能否能装满背包(或者最多装多少):dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]); ,对应题目如下:

  • 动态规划:416.分割等和子集(opens new window)
  • 动态规划:1049.最后一块石头的重量 II(opens new window)

装满背包有几种方法:dp[j] += dp[j - nums[i]] ,对应题目如下:

背包装满最大价值:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]); ,对应题目如下:

装满背包所有物品的最小个数:dp[j] = min(dp[j - coins[i]] + 1, dp[j]); ,对应题目如下:

遍历顺序

01背包

动态规划:关于01背包问题,你该了解这些! (opens new window)中我们讲解二维dp数组01背包先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历

动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中,我们讲解一维dp数组01背包只能先遍历物品再遍历背包容量,且第二层for循环是从大到小遍历

一维dp数组的背包在遍历顺序上和二维dp数组实现的01背包其实是有很大差异的,大家需要注意!

完全背包

说完01背包,再看看完全背包。

动态规划:关于完全背包,你该了解这些! (opens new window)中,讲解了纯完全背包的一维dp数组实现,先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历

但是仅仅是纯完全背包的遍历顺序是这样的,题目稍有变化,两个for循环的先后顺序就不一样了。

如果求 组合数 就是 外层for循环遍历物品,内层for循环遍历背包

如果求 排列数 就是 外层for循环遍历背包,内层for循环遍历物品

相关题目如下:

  • 求组合数:动态规划:518.零钱兑换II(opens new window)
  • 求排列数:动态规划:377. 组合总和 Ⅳ (opens new window)、动态规划:70. 爬楼梯进阶版(完全背包)(opens new window)

如果求最小数,那么两层for循环的先后顺序就无所谓了,相关题目如下:

  • 求最小数:动态规划:322. 零钱兑换 (opens new window)、动态规划:279.完全平方数(opens new window)

对于背包问题,其实递推公式算是容易的,难是难在遍历顺序上,如果把遍历顺序搞透,才算是真正理解了

第三十八天的总算是结束了,直冲Day39!


http://www.ppmy.cn/news/1555555.html

相关文章

【Iot】前端串口serialport.js串口通信库快速入门(附经验总结)

前端串口serialport.js串口通信库快速入门(附经验总结) 一、serialport简介1.1 安装1.2 基本用法1.3 完整示例代码二、问题2.1 数据包被拆分(已解决)2.2 串口返回的多种数据,如何区分类别(待解决)公司项目需要开发一个windows客户端,提供串口modbusRTU数据读取、处理、显…

【51单片机】矩阵按键快速上手

51单片机矩阵按键是一种在单片机应用系统中广泛使用的按键排列方式&#xff0c;特别适用于需要多个按键但I/O口资源有限的情况。以下是对51单片机矩阵按键的详细介绍&#xff1a; 一、矩阵按键的基本概念 ‌定义‌&#xff1a;矩阵按键&#xff0c;又称行列键盘&#xff0c;是…

点击按钮打开dialog嵌套表格checked数据关闭dialog回显checked数据

介绍&#xff1a;点击按钮打开dialog嵌套表格&#xff0c;勾选数据&#xff0c;点击确认关闭弹窗并且回显选中得数据&#xff0c;回显的数据被删除&#xff0c;dialog里面的数据也被取消勾选&#xff0c;废话不多说 上代码&#xff01;&#xff01;&#xff01; 这里的勾选回显…

两两交换链表中的节点 删除链表的倒数第N个节点 链表相交 环形链表II

两两交换链表中的节点 给定一个链表&#xff0c;两两交换其中相邻的节点&#xff0c;并返回交换后的链表。 你不能只是单纯的改变节点内部的值&#xff0c;而是需要实际的进行节点交换。 思路 使用虚拟头结点&#xff0c;这样会方便很多&#xff0c;要不然每次针对头结点&…

ECharts柱状图-柱图6,附视频讲解与代码下载

引言&#xff1a; 在数据可视化的世界里&#xff0c;ECharts凭借其丰富的图表类型和强大的配置能力&#xff0c;成为了众多开发者的首选。今天&#xff0c;我将带大家一起实现一个柱状图图表&#xff0c;通过该图表我们可以直观地展示和分析数据。此外&#xff0c;我还将提供…

HTML+CSS+Vue3的静态网页,免费开源,可当作作业使用

拿走请吱一声&#xff0c;点个关注吧&#xff0c;代码如下&#xff0c;网页有移动端适配 HTML <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width…

qlu数据结构测试

12.15测试 编程题 1、【问题描述】 已知非空线性链表第1个链结点指针为list&#xff0c;链结点构造为 struct node{ datatype data; node *link; }; 请写一算法&#xff0c;将该链表中数据域值最大的那个点移到链表的最后面。&#xff08;假设链表中数据域值最大的链…

python爬虫--小白篇【爬虫实践】

一、前言 1.1、王者荣耀皮肤爬虫 根据王者荣耀链接&#xff0c;将王者荣耀的全部英雄的全部皮肤图片爬取保存到本地。经过分析得到任务的三个步骤&#xff1a; 根据首页全部英雄列表连接获取全部英雄的名称hero_name以及对应的hero_id&#xff1b;根据单个英雄的hero_name和h…