边界层气象:脉动量预报方程展开 | 湍流脉动速度方差预报方程 | 平均湍流动能收支方程推导

news/2024/12/14 9:20:59/

写成分量形式

原始式子:
∂ u i ′ ∂ t + u ‾ j ∂ u i ′ ∂ x j + u j ′ ∂ u ‾ i ∂ x j + u j ′ ∂ u i ′ ∂ x j = − 1 ρ ‾ ⋅ ∂ p ′ ∂ x i + g θ v ′ θ ‾ v δ i 3 + f ϵ i j 3 u j ′ + v ∂ 2 u i ′ ∂ x j 2 + ∂ ( u i ′ u j ′ ‾ ) ∂ x j \begin{align*} \frac{\partial u_i'}{\partial t}+ \overline u_j\frac{\partial u_i'}{\partial x_j}+ u_j'\frac{\partial \overline u_i}{\partial x_j}+u_j'\frac{\partial u_i'}{\partial x_j}= -\frac{1}{\overline \rho}\cdot{ \frac{\partial p'}{\partial x_i}} +g\frac{\theta_v'}{\overline \theta_v}\delta_{i3} +f\epsilon_{ij3}u_j' +v\frac{\partial^2u_i'}{\partial x_j^2} +\frac{\partial (\overline {u_i'u_j'})}{\partial x_j} \end{align*} tui+ujxjui+ujxjui+ujxjui=ρ1xip+gθvθvδi3+fϵij3uj+vxj22ui+xj(uiuj)

x 方向:
∂ u ′ ∂ t + ( u ‾ ∂ u ′ ∂ x + v ‾ ∂ u ′ ∂ y + w ‾ ∂ u ′ ∂ z ) + ( u ′ ∂ u ‾ ∂ x + v ′ ∂ u ‾ ∂ y + w ′ ∂ u ‾ ∂ z ) + ( u ′ ∂ u ′ ∂ x + v ′ ∂ u ′ ∂ y + w ′ ∂ u ′ ∂ z ) = − 1 ρ ‾ ⋅ ∂ p ′ ∂ x + f v ′ + v ∂ 2 u ′ ∂ x 2 + v ∂ 2 u ′ ∂ y 2 + v ∂ 2 u ′ ∂ z 2 + ∂ ( u ′ u ′ ‾ ) ∂ x + ∂ ( u ′ v ′ ‾ ) ∂ y + ∂ ( u ′ w ′ ‾ ) ∂ z \begin{align*} \frac{\partial u'}{\partial t}+ (\overline u\frac{\partial u'}{\partial x}+ \overline v\frac{\partial u'}{\partial y}+ \overline w\frac{\partial u'}{\partial z})+ ( u'\frac{\partial \overline u}{\partial x}+ v'\frac{\partial \overline u}{\partial y}+ w'\frac{\partial \overline u}{\partial z} )+ ( u'\frac{\partial u'}{\partial x}+ v'\frac{\partial u'}{\partial y}+ w'\frac{\partial u'}{\partial z} )=\\ -\frac{1}{\overline \rho}\cdot{ \frac{\partial p'}{\partial x}}\\ +fv'\\ +v\frac{\partial^2u'}{\partial x^2}+ v\frac{\partial^2u'}{\partial y^2}+ v\frac{\partial^2u'}{\partial z^2}\\ +\frac{\partial (\overline {u'u'})}{\partial x}+ \frac{\partial (\overline {u'v'})}{\partial y}+ \frac{\partial (\overline {u'w'})}{\partial z} \end{align*} tu+(uxu+vyu+wzu)+(uxu+vyu+wzu)+(uxu+vyu+wzu)=ρ1xp+fv+vx22u+vy22u+vz22u+x(uu)+y(uv)+z(uw)
y 方向:
∂ v ′ ∂ t + ( u ‾ ∂ v ′ ∂ x + v ‾ ∂ v ′ ∂ y + w ‾ ∂ v ′ ∂ z ) + ( u ′ ∂ v ‾ ∂ x + v ′ ∂ v ‾ ∂ y + w ′ ∂ v ‾ ∂ z ) + ( u ′ ∂ v ′ ∂ x + v ′ ∂ v ′ ∂ y + w ′ ∂ v ′ ∂ z ) = − 1 ρ ‾ ⋅ ∂ p ′ ∂ y − f u ′ + v ∂ 2 v ′ ∂ x 2 + v ∂ 2 v ′ ∂ y 2 + v ∂ 2 v ′ ∂ z 2 + ∂ ( v ′ u ′ ‾ ) ∂ x + ∂ ( v ′ v ′ ‾ ) ∂ y + ∂ ( v ′ w ′ ‾ ) ∂ z \begin{align*} \frac{\partial v'}{\partial t}+ (\overline u\frac{\partial v'}{\partial x}+ \overline v\frac{\partial v'}{\partial y}+ \overline w\frac{\partial v'}{\partial z})+ ( u'\frac{\partial \overline v}{\partial x}+ v'\frac{\partial \overline v}{\partial y}+ w'\frac{\partial \overline v}{\partial z} )+ ( u'\frac{\partial v'}{\partial x}+ v'\frac{\partial v'}{\partial y}+ w'\frac{\partial v'}{\partial z} )=\\ -\frac{1}{\overline \rho}\cdot{ \frac{\partial p'}{\partial y}}\\ -fu'\\ +v\frac{\partial^2v'}{\partial x^2}+ v\frac{\partial^2v'}{\partial y^2}+ v\frac{\partial^2v'}{\partial z^2}\\ +\frac{\partial (\overline {v'u'})}{\partial x}+ \frac{\partial (\overline {v'v'})}{\partial y}+ \frac{\partial (\overline {v'w'})}{\partial z} \end{align*} tv+(uxv+vyv+wzv)+(uxv+vyv+wzv)+(uxv+vyv+wzv)=ρ1ypfu+vx22v+vy22v+vz22v+x(vu)+y(vv)+z(vw)
z 方向:
∂ w ′ ∂ t + ( u ‾ ∂ w ′ ∂ x + v ‾ ∂ w ′ ∂ y + w ‾ ∂ w ′ ∂ z ) + ( u ′ ∂ w ‾ ∂ x + v ′ ∂ w ‾ ∂ y + w ′ ∂ w ‾ ∂ z ) + ( u ′ ∂ w ′ ∂ x + v ′ ∂ w ′ ∂ y + w ′ ∂ w ′ ∂ z ) = − 1 ρ ‾ ⋅ ∂ p ′ ∂ z + g θ v ′ θ ‾ v + v ∂ 2 w ′ ∂ x 2 + v ∂ 2 w ′ ∂ y 2 + v ∂ 2 w ′ ∂ z 2 + ∂ ( w ′ u ′ ‾ ) ∂ x + ∂ ( w ′ v ′ ‾ ) ∂ y + ∂ ( w ′ w ′ ‾ ) ∂ z \begin{align*} \frac{\partial w'}{\partial t}+ (\overline u\frac{\partial w'}{\partial x}+ \overline v\frac{\partial w'}{\partial y}+ \overline w\frac{\partial w'}{\partial z})+ ( u'\frac{\partial \overline w}{\partial x}+ v'\frac{\partial \overline w}{\partial y}+ w'\frac{\partial \overline w}{\partial z} )+ ( u'\frac{\partial w'}{\partial x}+ v'\frac{\partial w'}{\partial y}+ w'\frac{\partial w'}{\partial z} )=\\ -\frac{1}{\overline \rho}\cdot{ \frac{\partial p'}{\partial z}}\\ +g\frac{\theta_v'}{\overline \theta_v}\\ +v\frac{\partial^2w'}{\partial x^2}+ v\frac{\partial^2w'}{\partial y^2}+ v\frac{\partial^2w'}{\partial z^2}\\ +\frac{\partial (\overline {w'u'})}{\partial x}+ \frac{\partial (\overline {w'v'})}{\partial y}+ \frac{\partial (\overline {w'w'})}{\partial z} \end{align*} tw+(uxw+vyw+wzw)+(uxw+vyw+wzw)+(uxw+vyw+wzw)=ρ1zp+gθvθv+vx22w+vy22w+vz22w+x(wu)+y(wv)+z(ww)

湍流脉动速度方差得预报方程推导

对于原始式子
∂ u i ′ ∂ t + u ‾ j ∂ u i ′ ∂ x j + u j ′ ∂ u ‾ i ∂ x j + u j ′ ∂ u i ′ ∂ x j = − 1 ρ ‾ ⋅ ∂ p ′ ∂ x i + g θ v ′ θ ‾ v δ i 3 + f ϵ i j 3 u j ′ + v ∂ 2 u i ′ ∂ x j 2 + ∂ ( u i ′ u j ′ ‾ ) ∂ x j \begin{align*} \frac{\partial u_i'}{\partial t}+ \overline u_j\frac{\partial u_i'}{\partial x_j}+ u_j'\frac{\partial \overline u_i}{\partial x_j}+u_j'\frac{\partial u_i'}{\partial x_j}= -\frac{1}{\overline \rho}\cdot{ \frac{\partial p'}{\partial x_i}} +g\frac{\theta_v'}{\overline \theta_v}\delta_{i3} +f\epsilon_{ij3}u_j' +v\frac{\partial^2u_i'}{\partial x_j^2} +\frac{\partial (\overline {u_i'u_j'})}{\partial x_j} \end{align*} tui+ujxjui+ujxjui+ujxjui=ρ1xip+gθvθvδi3+fϵij3uj+vxj22ui+xj(uiuj)
在等式两边同时乘以 u i ′ u_i' ui,根据微分的性质进行结合,类似
2 u i ′ ∂ u i ′ ∂ t = ∂ u i ′ 2 ∂ t 2u_i'\frac{\partial u_i'}{\partial t}=\frac{\partial u_i'^2}{\partial t} 2uitui=tui′2
得到
∂ u i ′ 2 ∂ t + u ‾ j ∂ u ′ 2 ∂ x j + 2 u i ′ u j ′ ∂ u ‾ i ∂ x j + 2 u i ′ u j ′ ∂ u i ′ ∂ x j = − 2 u i ′ ρ ‾ ⋅ ∂ p ′ ∂ x i + 2 g θ v ′ θ ‾ v δ i j 3 u j ′ + 2 v u i ′ ∂ 2 u i ′ ∂ x j 2 + 2 u i ′ u i ′ u j ′ ‾ ∂ x j \begin{align*} \frac{\partial u_i'^2}{\partial t}+ \overline u_j\frac{\partial u'^2}{\partial x_j}+ 2u_i'u_j'\frac{\partial \overline u_i}{\partial x_j}+ 2u_i'u_j'\frac{\partial u_i'}{\partial x_j}=\\ -\frac{2u_i'}{\overline \rho}\cdot{ \frac{\partial p'}{\partial x_i}}\\ +2g\frac{\theta_v'}{\overline \theta_v}\delta_{ij3}u_j'\\ +2vu_i'\frac{\partial^2u_i'}{\partial x_j^2}\\ +2u_i'\frac{\overline{u_i'u_j'}}{\partial x_j} \end{align*} tui′2+ujxju′2+2uiujxjui+2uiujxjui=ρ2uixip+2gθvθvδij3uj+2vuixj22ui+2uixjuiuj

其中,左侧第四项可以表示为,其中右侧第二项的右半边为连续方程,其值为 0
2 u i ′ u j ′ ∂ u i ′ ∂ x j = ∂ ( u i ′ 2 u j ′ ) ∂ x j − u i ′ 2 ∂ u j ′ ∂ x j = ∂ ( u i ′ 2 u j ′ ) ∂ x j 【由连续方程 ∂ u j ′ ∂ x j = 0 】 2u_i'u_j'\frac{\partial u_i'}{\partial x_j}= \frac{\partial({{u_i'^2u_j'}})}{\partial x_j}- {u_i'}^2\frac{\partial u_j'}{\partial x_j}= \frac{\partial({{u_i'^2u_j'}})}{\partial x_j}【由连续方程\frac{\partial u_j'}{\partial x_j}=0】 2uiujxjui=xj(ui′2uj)ui2xjuj=xj(ui′2uj)【由连续方程xjuj=0
对于右侧第一项
− 2 u i ′ ρ ‾ ⋅ ∂ p ′ ∂ x i = − 2 ρ ‾ ( ∂ ( u i ′ p ′ ) ∂ x i − ∂ u i ′ ∂ x i p ′ ) , 其中右侧第二项为连续方程,为 0 -\frac{2u_i'}{\overline \rho}\cdot{ \frac{\partial p'}{\partial x_i}}=-\frac{2}{\overline \rho}(\frac{\partial (u_i'p')}{\partial x_i}-\frac{\partial u_i'}{\partial x_i}p'),其中右侧第二项为连续方程,为0 ρ2uixip=ρ2(xi(uip)xiuip),其中右侧第二项为连续方程,为0
因此有
− 2 u i ′ ρ ‾ ⋅ ∂ p ′ ∂ x i = − 2 ρ ‾ ⋅ ∂ ( u i ′ p ′ ) ∂ x i -\frac{2u_i'}{\overline \rho}\cdot{ \frac{\partial p'}{\partial x_i}}=-\frac{2}{\overline \rho}\cdot{ \frac{\partial (u_i'p')}{\partial x_i}} ρ2uixip=ρ2xi(uip)
对于右侧第三项有
2 v u i ′ ∂ 2 u i ′ ∂ x j 2 = v ∂ 2 u i ′ 2 ∂ x j 2 − 2 v ( ∂ u i ′ ∂ x j ) 2 = v ∂ 2 u i ′ 2 ∂ x j 2 − 2 ϵ 2vu_i'\frac{\partial^2u_i'}{\partial x_j^2}= v\frac{\partial^2u_i'^2}{\partial x_j^2}-2v(\frac{\partial u_i'}{\partial x_j})^2=v\frac{\partial^2u_i'^2}{\partial x_j^2}-2\epsilon 2vuixj22ui=vxj22ui′22v(xjui)2=vxj22ui′22ϵ
将上述式子代入后对取雷诺平均,同时忽略两个小项 v ∂ 2 u i ′ 2 ‾ ∂ x j 2 , 2 u i ′ ∂ ( u i ′ u j ′ ) ‾ ∂ x j ‾ v\frac{\partial^2\overline{u_i^{'2}}}{\partial x_j^2},2\overline{u_i'\frac{\partial \overline{(u_i'u_j')}}{\partial x_j}} vxj22ui2,2uixj(uiuj)),得到
∂ u i ′ 2 ‾ ∂ t + u ‾ j ∂ u ′ 2 ‾ ∂ x j = − 2 ρ ‾ ⋅ ∂ ( u i ′ p ′ ) ‾ ∂ x i + 2 g θ ‾ v ( u i ′ θ v ′ ) ‾ δ i j 3 − 2 u i ′ u j ′ ‾ ∂ u i ‾ ∂ x j − ∂ ( u i ′ 2 u j ′ ‾ ) ∂ x j − 2 ϵ \begin{align*} \frac{\partial \overline {u_i'^2}}{\partial t}+ \overline u_j\frac{\partial \overline{u'^2}}{\partial x_j} =\\ -\frac{2}{\overline \rho}\cdot{ \frac{\partial\overline{(u_i'p')}}{\partial x_i}}\\ +2\frac{g}{\overline \theta_v}\overline{(u_i'\theta_v')}\delta_{ij3}\\ -2\overline{u_i'u_j'}\frac{\partial \overline{u_i}}{\partial x_j}\\ -\frac{\partial(\overline{{u_i'^2u_j'}})}{\partial x_j}\\ -2\epsilon \end{align*} tui′2+ujxju′2=ρ2xi(uip)+2θvg(uiθv)δij32uiujxjuixj(ui′2uj)2ϵ

TKE 方程推导

将湍流脉动速度方差展开
写成分量形式 (将湍能耗散项放在了 x 方向,确保下方求和后只有 2 ϵ 2\epsilon 2ϵ):

∂ u ′ 2 ‾ ∂ t + ∂ v ′ 2 ‾ ∂ t + ∂ w ′ 2 ‾ ∂ t + ( u ‾ ∂ u ′ 2 ‾ ∂ x + v ‾ ∂ u ′ 2 ‾ ∂ y + w ‾ ∂ u ′ 2 ‾ ∂ y ) + ( u ‾ ∂ v ′ 2 ‾ ∂ x + v ‾ ∂ v ′ 2 ‾ ∂ y + w ‾ ∂ v ′ 2 ‾ ∂ y ) + ( u ‾ ∂ v ′ 2 ‾ ∂ x + v ‾ ∂ v ′ 2 ‾ ∂ y + w ‾ ∂ v ′ 2 ‾ ∂ y ) = − 2 ρ ‾ ⋅ [ ∂ ( u ′ p ′ ) ‾ ∂ x + ∂ ( v ′ p ′ ) ‾ ∂ y + ∂ ( w ′ p ′ ) ‾ ∂ z ] + 2 g θ ‾ v ( w ′ θ v ′ ‾ ) − 2 ( u ′ u ′ ‾ ∂ u ‾ ∂ x + u ′ v ′ ‾ ∂ u ‾ ∂ y + u ′ w ′ ‾ ∂ u ‾ ∂ x + v ′ u ′ ‾ ∂ v ‾ ∂ z + v ′ v ′ ‾ ∂ v ‾ ∂ y + v ′ w ′ ‾ ∂ v ‾ ∂ z + w ′ u ′ ‾ ∂ w ‾ ∂ z + w ′ v ′ ‾ ∂ w ‾ ∂ y + w ′ w ′ ‾ ∂ w ‾ ∂ z ) − [ ∂ ( u ′ 2 u ′ ) ‾ ∂ x + ∂ ( u ′ 2 v ′ ‾ ) ∂ y + ∂ ( u ′ 2 w ′ ‾ ) ∂ z + ∂ ( v ′ 2 u ′ ) ‾ ∂ x + ∂ ( v ′ 2 v ′ ‾ ) ∂ y + ∂ ( v ′ 2 w ′ ‾ ) ∂ z + ∂ ( w ′ 2 u ′ ) ‾ ∂ x + ∂ ( w ′ 2 v ′ ‾ ) ∂ y + ∂ ( w ′ 2 w ′ ‾ ) ∂ z ] − 2 ϵ \begin{align*} \frac{\partial \overline{{u^{'}}^2}}{\partial t}+ \frac{\partial \overline{{v^{'}}^2}}{\partial t}+ \frac{\partial \overline{{w^{'}}^2}}{\partial t} \\ +(\overline u\frac{\partial \overline{{u^{'}}^2}}{\partial x}+ \overline v\frac{\partial \overline{{u^{'}}^2}}{\partial y}+ \overline w\frac{\partial \overline{{u^{'}}^2}}{\partial y})+(\overline u\frac{\partial \overline{{v^{'}}^2}}{\partial x}+ \overline v\frac{\partial \overline{{v^{'}}^2}}{\partial y}+ \overline w\frac{\partial \overline{{v^{'}}^2}}{\partial y})+ (\overline u\frac{\partial \overline{{v^{'}}^2}}{\partial x}+ \overline v\frac{\partial \overline{{v^{'}}^2}}{\partial y}+ \overline w\frac{\partial \overline{{v^{'}}^2}}{\partial y}) =\\ -\frac{2}{\overline \rho}\cdot{[ \frac{\partial\overline{(u'p')}}{\partial x}+ \frac{\partial\overline{(v'p')}}{\partial y}+ \frac{\partial\overline{(w'p')}}{\partial z}]}\\ +2\frac{g}{\overline \theta_v}(\overline {w'\theta_v^{'}})\\ -2(\overline{u'u'}\frac{\partial \overline u}{\partial x}+ \overline{u'v'}\frac{\partial \overline u}{\partial y}+ \overline{u'w'}\frac{\partial \overline u}{\partial x}+ \overline{v'u'}\frac{\partial \overline v}{\partial z}+ \overline{v'v'}\frac{\partial \overline v}{\partial y}+ \overline{v'w'}\frac{\partial \overline v}{\partial z}+ \overline{w'u'}\frac{\partial \overline w}{\partial z}+ \overline{w'v'}\frac{\partial \overline w}{\partial y}+ \overline{w'w'}\frac{\partial \overline w}{\partial z})\\ -[\frac{\partial (\overline{{u^{'}}^2u')}}{\partial x}+ \frac{\partial (\overline{{u^{'}}^2v'})}{\partial y}+ \frac{\partial (\overline{{u^{'}}^2w'})}{\partial z}+ \frac{\partial (\overline{{v^{'}}^2u')}}{\partial x}+ \frac{\partial (\overline{{v^{'}}^2v'})}{\partial y}+ \frac{\partial (\overline{{v^{'}}^2w'})}{\partial z}+ \frac{\partial (\overline{{w^{'}}^2u')}}{\partial x}+ \frac{\partial (\overline{{w^{'}}^2v'})}{\partial y}+ \frac{\partial (\overline{{w^{'}}^2w'})}{\partial z}] \\ -2\epsilon \end{align*} tu2+tv2+tw2+(uxu2+vyu2+wyu2)+(uxv2+vyv2+wyv2)+(uxv2+vyv2+wyv2)=ρ2[x(up)+y(vp)+z(wp)]+2θvg(wθv)2(uuxu+uvyu+uwxu+vuzv+vvyv+vwzv+wuzw+wvyw+wwzw)[x(u2u)+y(u2v)+z(u2w)+x(v2u)+y(v2v)+z(v2w)+x(w2u)+y(w2v)+z(w2w)]2ϵ

将 (1)除以 1/2,整理后得到 (2)
1 2 [ ∂ ( u ′ 2 ‾ + v ′ 2 ‾ + w ′ 2 ‾ ) ∂ t u ‾ ∂ ( u ′ 2 ‾ + v ′ 2 ‾ + w ′ 2 ‾ ) ∂ x + v ‾ ∂ ( u ′ 2 ‾ + v ′ 2 ‾ + w ′ 2 ‾ ) ∂ y + w ‾ ∂ ( u ′ 2 ‾ + v ′ 2 ‾ + w ′ 2 ‾ ) ∂ z ] = − 1 ρ ‾ ⋅ [ ∂ ( u ′ p ′ ) ‾ ∂ x + ∂ ( v ′ p ′ ) ‾ ∂ y + ∂ ( w ′ p ′ ) ‾ ∂ z ] + g θ ‾ v ( w ′ θ v ′ ‾ ) − ( u ′ u ′ ‾ ∂ u ‾ ∂ x + u ′ v ′ ‾ ∂ u ‾ ∂ y + u ′ w ′ ‾ ∂ u ‾ ∂ x + v ′ u ′ ‾ ∂ v ‾ ∂ z + v ′ v ′ ‾ ∂ v ‾ ∂ y + v ′ w ′ ‾ ∂ v ‾ ∂ z + w ′ u ′ ‾ ∂ w ‾ ∂ z + w ′ v ′ ‾ ∂ w ‾ ∂ y + w ′ w ′ ‾ ∂ w ‾ ∂ z ) − 1 2 [ ∂ u ′ ( u ′ 2 + v ′ 2 + w ′ 2 ) ‾ ∂ x + 1 2 [ ∂ v ′ ( u ′ 2 + v ′ 2 + w ′ 2 ) ‾ ∂ y + 1 2 [ ∂ w ′ ( u ′ 2 + v ′ 2 + w ′ 2 ) ‾ ∂ z ] − ϵ \begin{align*} \frac{1}{2}[ \frac{\partial (\overline {{u'}^2}+\overline {{v'}^2}+\overline {{w'}^2})}{\partial t}\\ \overline{u}\frac{\partial (\overline {{u'}^2}+\overline {{v'}^2}+\overline {{w'}^2})}{\partial x}+ \overline{v}\frac{\partial (\overline {{u'}^2}+\overline {{v'}^2}+\overline {{w'}^2})}{\partial y}+ \overline{w}\frac{\partial (\overline {{u'}^2}+\overline {{v'}^2}+\overline {{w'}^2})}{\partial z} ]=\\ -\frac{1}{\overline \rho}\cdot{[ \frac{\partial\overline{(u'p')}}{\partial x}+ \frac{\partial\overline{(v'p')}}{\partial y}+ \frac{\partial\overline{(w'p')}}{\partial z}]}\\ +\frac{g}{\overline \theta_v}(\overline {w'\theta_v^{'}})\\ -(\overline{u'u'}\frac{\partial \overline u}{\partial x}+ \overline{u'v'}\frac{\partial \overline u}{\partial y}+ \overline{u'w'}\frac{\partial \overline u}{\partial x}+ \overline{v'u'}\frac{\partial \overline v}{\partial z}+ \overline{v'v'}\frac{\partial \overline v}{\partial y}+ \overline{v'w'}\frac{\partial \overline v}{\partial z}+ \overline{w'u'}\frac{\partial \overline w}{\partial z}+ \overline{w'v'}\frac{\partial \overline w}{\partial y}+ \overline{w'w'}\frac{\partial \overline w}{\partial z})-\\ \frac{1}{2}[\frac {\partial \overline{ {u'}({{u'}^2}+ {{v'}^2}+{{w'}^2})}}{\partial x}+ \frac{1}{2}[\frac {\partial \overline{ {v'}({{u'}^2}+ {{v'}^2}+{{w'}^2})}}{\partial y}+ \frac{1}{2}[\frac {\partial \overline{ {w'}({{u'}^2}+ {{v'}^2}+{{w'}^2})}}{\partial z} ]- \epsilon \end{align*} 21[t(u2+v2+w2)ux(u2+v2+w2)+vy(u2+v2+w2)+wz(u2+v2+w2)]=ρ1[x(up)+y(vp)+z(wp)]+θvg(wθv)(uuxu+uvyu+uwxu+vuzv+vvyv+vwzv+wuzw+wvyw+wwzw)21[xu(u2+v2+w2)+21[yv(u2+v2+w2)+21[zw(u2+v2+w2)]ϵ 由平均湍流动能表达式 (3)

e ‾ = 1 2 ( u ′ 2 ‾ + v ′ 2 ‾ + w ′ 2 ‾ ) \overline e=\frac{1}{2}(\overline {{u'}^2}+\overline {{v'}^2}+\overline {{w'}^2}) e=21(u2+v2+w2)
由于 u, v, w 三者是独立的,因此对平均湍流动能得偏导数等于 u ′ 2 ‾ , v ′ 2 ‾ , w ′ 2 ‾ \overline {{u'}^2},\overline {{v'}^2},\overline {{w'}^2} u2,v2,w2 各自的偏导数之和除以 2,因此将该式代入 (2) 中得到

∂ e ‾ ∂ t + u ‾ ∂ e ‾ ∂ x + v ‾ ∂ e ‾ ∂ y + w ‾ ∂ e ‾ ∂ z = − 1 ρ ‾ ⋅ [ ∂ ( u ′ p ′ ) ‾ ∂ x + ∂ ( v ′ p ′ ) ‾ ∂ y + ∂ ( w ′ p ′ ) ‾ ∂ z ] + g θ ‾ v ( w ′ θ v ′ ‾ ) − ( u ′ u ′ ‾ ∂ u ‾ ∂ x + u ′ v ′ ‾ ∂ u ‾ ∂ y + u ′ w ′ ‾ ∂ u ‾ ∂ x + v ′ u ′ ‾ ∂ v ‾ ∂ z + v ′ v ′ ‾ ∂ v ‾ ∂ y + v ′ w ′ ‾ ∂ v ‾ ∂ z + w ′ u ′ ‾ ∂ w ‾ ∂ z + w ′ v ′ ‾ ∂ w ‾ ∂ y + w ′ w ′ ‾ ∂ w ‾ ∂ z ) − [ ∂ ( u ′ e ) ‾ ∂ x + ∂ ( v ′ e ) ‾ ∂ y + ∂ ( w ′ e ) ‾ ∂ z ] − ϵ \begin{align*} \frac{\partial \overline e}{\partial t}+ \overline{u}\frac{\partial \overline e}{\partial x}+ \overline{v}\frac{\partial \overline e}{\partial y}+ \overline{w}\frac{\partial \overline e}{\partial z} =\\ -\frac{1}{\overline \rho}\cdot{[ \frac{\partial\overline{(u'p')}}{\partial x}+ \frac{\partial\overline{(v'p')}}{\partial y}+ \frac{\partial\overline{(w'p')}}{\partial z}]}\\ +\frac{g}{\overline \theta_v}(\overline {w'\theta_v^{'}})\\ -(\overline{u'u'}\frac{\partial \overline u}{\partial x}+ \overline{u'v'}\frac{\partial \overline u}{\partial y}+ \overline{u'w'}\frac{\partial \overline u}{\partial x}+ \overline{v'u'}\frac{\partial \overline v}{\partial z}+ \overline{v'v'}\frac{\partial \overline v}{\partial y}+ \overline{v'w'}\frac{\partial \overline v}{\partial z}+ \overline{w'u'}\frac{\partial \overline w}{\partial z}+ \overline{w'v'}\frac{\partial \overline w}{\partial y}+ \overline{w'w'}\frac{\partial \overline w}{\partial z})\\ -[\frac{\partial \overline {(u' e)}}{\partial x}+ \frac{\partial \overline {(v' e)}}{\partial y}+ \frac{\partial \overline {(w' e)}}{\partial z} ]-\epsilon\\ \end{align*} te+uxe+vye+wze=ρ1[x(up)+y(vp)+z(wp)]+θvg(wθv)(uuxu+uvyu+uwxu+vuzv+vvyv+vwzv+wuzw+wvyw+wwzw)[x(ue)+y(ve)+z(we)]ϵ

∂ e ‾ ∂ t + u j ‾ ∂ e ‾ ∂ x j = − 1 ρ ‾ ⋅ ∂ ( u i ′ p ′ ) ‾ ∂ x i + g θ ‾ v ( u i ′ θ v ′ ‾ ) δ i 3 − u i ′ u j ′ ‾ ∂ u i ‾ ∂ x j − ∂ ( u j ′ e ) ‾ ∂ x j − ϵ \begin{align*} \frac{\partial \overline e}{\partial t}+ \overline{u_j}\frac{\partial \overline e}{\partial x_j} =\\ -\frac{1}{\overline \rho}\cdot{ \frac{\partial\overline{(u_i'p')}}{\partial x_i} }\\ +\frac{g}{\overline \theta_v}(\overline {u_i'\theta_v^{'}})\delta_{i3}\\ -\overline{u_i'u_j'}\frac{\partial \overline {u_i}}{\partial x_j} \\ -\frac{\partial \overline {(u_j' e)}}{\partial x_j}\\ -\epsilon\\ \end{align*} te+ujxje=ρ1xi(uip)+θvg(uiθv)δi3uiujxjuixj(uje)ϵ


http://www.ppmy.cn/news/1554979.html

相关文章

satoken 后端获取用户id的原理是啥 用了前端传的那个参数

在 Sa-Token 框架中,后端获取用户 ID 的过程与前端传递的参数密切相关。Sa-Token 是一个基于 JWT 的轻量级权限管理框架,主要用于解决权限控制、登录管理等问题。具体来说,后端如何获取用户 ID,取决于你前后端如何设计以及 Sa-Tok…

vue项目通过appendChild()函数向页面上追加组件

前言: 此篇文章自己结合项目和文档自己理解的,作用于往后遇见此类开发需求时参考。 正文: 1、createApp() 创建一个应用程序实例 function createApp(rootComponent: Component, rootProps?: object): App 第一个参数是根组件。第二个可选…

Scratch节日作品 | 圣诞节礼物——体验节日的温馨与编程的乐趣! ❄️

今天为大家推荐一款充满节日氛围的Scratch作品——《圣诞礼物》!这款程序不仅带来了雪花飘落、圣诞老人和麋鹿的经典场景,还通过编程的形式让小朋友们体验到收到礼物的喜悦。通过这款游戏,小朋友们能学习编程知识、了解圣诞文化,同…

顺序表的使用,对数据的增删改查

主函数: 3.c #include "3.h"//头文件调用 SqlListptr sql_cerate()//创建顺序表函数 {SqlListptr ptr(SqlListptr)malloc(sizeof(SqlList));//在堆区申请连续的空间if(NULLptr){printf("创建失败\n");return NULL;//如果没有申请成功&#xff…

VS2022 ASP.NET core Web API 示例代码解释

0. 项目结构 在创建ASP.NET Core Web API项目后,项目的基本结构如下: MyWebApiProject │ Controllers │ └── WeatherForecastController.cs │ Program.cs │ WeatherForecast.cs │ appsettings.json │ ...1. Program.cs 这个文件…

uni-app开发App注意事项

技术选择 分包目前不支持Vue3 个人选择考虑: 1、vue2由于官方不维护了,所以uniapp也不维护了。 2、vue3使用proxy,不支持ios9。 3、目前插件市场中 vue2开发的插件占比更大。 4、如果app页面较多,需要开启分包,但…

Ubuntu中iptables默认是开启的吗

不,Ubuntu 中 iptables 默认不是开启的。 虽然 Ubuntu 系统默认安装了 iptables 软件包(你可以通过 dpkg -l iptables 或 which iptables 命令来验证),但这并不意味着 iptables 规则已经生效。实际上,iptables 的规则…

Windows通过指令查看已安装的驱动

Windows通过指令查看已安装的驱动 在 Windows 操作系统中,有几种命令可以用来查看已安装的驱动程序。以下是常见的几种方法: 1. 使用 pnputil 查看已安装驱动程序 pnputil 是一个 Windows 内置工具,可以列出所有已安装的驱动程序包。 命令…